CSCI-UA.9480
Introduction to Computer Security

((, Session 3.5
T’ Meltdown and Spectre

N Y U Prof. Nadim Kobeissi

But Nadim, why are we covering this?

“Meltdown” and “Spectre:” Every modern et |NTEL RESPONDS TOSECURITY RESEARCH FINDINGS

Contact Intel PR Intel and other technology companies have been made aware of new security research

p roces Sor haS unﬁxab]_e S e Curity ﬂaws describing software analysis methods that, when used for malicious purposes, have the

potential to improperly gather sensitive data from computing devices that are operating as

q 5 . . . —_— designed. Intel believes these exploits do not have the potential to corrupt, modify or delete
Immediate concern is for Intel chips, but everyone is at risk. data.

BEE ¢-. - S I
NEWS

Home = Video ~World = UK = Business = Tech = Science = Stories = Entertainment & Arts

] IGHT - 1/4/7018 1:20 AM
IGE Technology | Science | Culture Gear Business Politic

Technology

The major Spectre and Meltdown Melt d Soectre: All Macs. iPh
flaws could linger for decades and iPads affected

Almost all microprocessors used in computers, phones, servers and more are
affected by a massive security flaw. You should update your systems

@) St ae M

THIS IS HUGE. REALLY. —

Meltdown and Spectre: Here’s what Intel,
Nope, no Intel chip recall after Spectre Apple, Microsoft, others are doing about

and Meltdown, CEO says it

CEO Brian Krzanich says the new security vulnerabilities may be deep Intel, Microsoft, ARM, and others have responded. We dig in.
but they're also being fixed with software updates. PETER BRIGHT - 1/5/2018, 2:52 PM

© 5January 2018 B f © ¥ [< Sshare

Fixed confidentially across whole ecosystem.

The mysterious case of the Linux Page Table Isolation patches

[Various errors and updates are addressed in Quiet in the peanut gallery]

tl;dr: there is presently an embargoed security bug impacting apparently all contemporary CPU
architectures that implement virtual memory, requiring hardware changes to fully resolve. Urgent
development of a software mitigation is being done in the open and recently landed in the Linux kernel,
and a similar mitigation began appearing in NT kernels in November. In the worst case the software fix
causes huge slowdowns in typical workloads. There are hints the attack impacts common virtualization
environments including Amazon EC2 and Google Compute Engine, and additional hints the exact attack
may involve a new variant of Rowhammer.

https://sweetness.hmmz.org/2018-01-01-the-mysterious-case-of-the-linux-page-table.html

https://sweetness.hmmz.org/2018-01-01-the-mysterious-case-of-the-linux-page-table.html

Meltdown: a
high-level
overview

Based on work by Moritz Lipp, Michael
Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom and Mike Hamburg.

“Meltdown breaks all security guarantees
provided by address space isolation and, thus,
every security mechanism building upon this
foundation. On affected systems, Meltdown
enables an adversary to read memory of other
processes or virtual machines in the cloud without
any permissions or privileges.”

— Meltdown paper authors.

What is process memory isolation?

e Handled by the kernel.

Main
, Process ¢
e Ensures that processes can’t access each “ Memory L
Virtual | | rocess 1
other’s reserved memory addresses and VPN Memory | 7 I Virtual
0 . <> : Memory ywpN
allocation regions. ! N = L 0
1 1 == 1
. . P I !
e ASLR (address space layout randomization) j DISK -l
I 1
is not a process memory isolation “ ’
Page Table Page Table
. . fi fi
technique, but further improves on the Process 0 O process 1

securlty and mtegrlty of data in memory. Virtual addresses of each process beginfrom 0

Protection implies at each instant page tables are disjoint
12

Meltdown: quick facts.

e Meltdown is a hardware vulnerability. Works
regardless of software stack.

e Exploits side channels to allow an attacker
who can run code on the processor to dump
entire computer memory.

e Caused by out-of-order optimizations on
modern CPUs.

e Out-of-order execution: Run faster

instructions before slower instructions if

there is no side effect on the result.

CPUs are like the universe...

Neptune

Uranus '

Jupiter ‘
Mars \
AT IR) @ g
! U Venys ﬁ .

Wt .:,f- ‘Mercury
AT)

Organized and predictable on the macro scale... Unpredictable and deranged on the quantum scale.
(Developer sees programs executing sequentially) (Sequential execution is relaxed and reordered for
performance)

In-order versus out-of-order execution.

-

A (slow instruction)

B (fast instruction)

C (fast instruction)

_

A (slow instruction)

C (fast instruction)

B (fast instruction) @

But what about side effects?

Out-of-order execution architecture.

|

— ITLB }4—

L1 Instruction Cache

l

Instruction Fetch & PreDecode

« Fetch instructions from Psrspch
memory. —< redictor Instruction Queue

» Assign micro-operation. hl—‘uopcmn 4-Way Decode

1 HOPs 1 uop l uor 1 uoP l uorp

MUX

12

Frontend

—_ ’ Allocation Queue I
I uor I uor | uor l uor
2 v
— CDB Reorder buffer l
. Ie [Lo L Lwr or

« Determine operation 5 SICheme T l

= uor uor uorp uo”P uoP
order. m
. = = =]

- Schedule execution — S AL BERERE
depending on micro- 3 2 (3] (8] (2] [F
operation. &5 4 2

~— Execution Units
25 o e
g3 DTLB STLB .
s 8 L1 Data Cache
= a L2 Cache —

10

Meltdown: simple example.

e Tryto read from protected kernel memory

; rcx = a protected kernel memory address
; rbx = address of a large array in user space

(WOUI.d reSUlt In a. page faUlt). mov al, byte [recx] ; read from forbidden kernel address
shl rax, 0xc ; multiply the result from the read operation with 4096
e Multiply the byte retrieved by 4096 and

mov rbx, qword [rbx + rax] ; touch the user space array at the offset that we just calculated

then read from that address.

£ 500
2 % 400
e Firstinstruction should stop the process, 5230 '
0 50 100 150 200 250
right? But what about out-of-order Page
execution? Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
e Address read by third instruction reveals ing over the 256 pages of probe_array shows one cache
hit, exactly on the page that was accessed during the out-
byte from first instruction! of-order execution.

11

Meltdown: yup, it’s practical!

£94b76£0: 12 XX e0 81 19 XX e0 81 44 6f 6¢ 70 68 69 6e 31 |........ Dolphinti|
£94b7700: 38 e5 e5 e5 e5 e5 e5 eb e5 e5S e5 eS e5 eS e5eb [8........... ... |
£94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............ |
£f94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |...ovvnvnnnnnnn. |
£94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |.... 0. |
£94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....ovvvnnnnnnn |
£94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 7374 |............ inst|
£94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203.......... |
£94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |pR.}(C....oovnt. |
£94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....ovvvnnnnnn |
£94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....T........... |
£94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....oovininnnnnn |
£f94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 736563 72 |.....covvn... secr|
£94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwdO.......... |
£94b77d0: 30 bd 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX 10..}C.vvvvnn... |
£94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....ovvininnnnn |
£fO4b77£f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |...ovvuvnennnnn. |
£94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 eS e5S e5 e5 e5e5 | ..., |
£94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c/
£94b7820: 64 6e 2e 6d 6f 7a 69 6¢c 6¢c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/ul
£94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

Listing (4) Memory dump of Firefox 56 on Ubuntu 16.10 on
a Intel Core 17-6700K disclosing saved passwords.

12

KAISER: mitigation for Meltdown.

e Also called Kernel page-table isolation

Virtual address space Physical address space
(K PT I) ° 0x00010000 -
e Increases separation between mapping | text \ 0x00000000
. . — — Kernel page-table isolation
virtual addresses to physical addresses
’ o Kernel space Kernel space
(maintained in "page tables”) in kernel ~ data Kernelspace
Space and user Space' - l_ — — — — — User space User space User space
oxo0rHT Kernel mode
stack
D page belonging to process
Ox7fffffff D page not belonging to process

13

Spectre: a high-
level overview

Based on work by Paul Kocher, Jann
Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz and Yuval
Yarom.

“Spectre attacks involve inducing a victim to
speculatively perform operations that would not
occur during correct program execution and

which leak the victim’s confidential information
via a side channel to the adversary.”

— Spectre paper authors.

CSCI-UA.9480: Introduction to Computer Security - Nadim Kobeissi

15

Spectre and speculative execution.

Out-of-order execution: Run faster
if (slowFetchFromMemory()) %

doSomethingFast();
there is no side effect on the result. t else 3

instructions before slower instructions if

Speculative execution: If calculating which 2 anotherFastThing();

branch to follow is more expensive than the

resulting branches, start calculating most Toy example: green code is estimated to be more
likely branch before deciding which one to likely based on previous runs, is speculatively

executed before red code.
follow.

1 if (index < simpleByteArray.length) {

2 index = simpleByteArray[index | 0];

3 index = (((index = 4096)|0) & (32x1024%1024-1)) |0;
4 localdunk "= probeTable[index|0]]|0;

5}

Listing 2: Exploiting Speculative Execution via JavaScript.

16

Spectre and speculative execution.

Out-of-order execution: Run faster
if (slowFetchFromMemory()) %

doSomethingFast();
there is no side effect on the result. t else 3

instructions before slower instructions if

anotherFastThing();

Speculative execution: If calculating which 2
branch to follow is more expensive than the

resulting branches, start calculating most If incorrect path was executed, then CPU has to

likely branch before deciding which one to roll back execution to maintain functional
correctness.
follow.
1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index = 4096)|0) & (32x1024%1024-1)) |0;
4 localdunk "= probeTable[index|0]]|0;
5}

Listing 2: Exploiting Speculative Execution via JavaScript.

17

Spectre and speculative execution.

Out-of-order execution: Run faster
if (slowFetchFromMemory()) %

doSomethingFast();
there is no side effect on the result. t else 3

instructions before slower instructions if

anotherFastThing();

Speculative execution: If calculating which 2
branch to follow is more expensive than the

resulting branches, start calculating most But what about cache modifications?

likely branch before deciding which one to The called value is still “warm” in cache!
follow.

1 if (index < simpleByteArray.length) {

2 index = simpleByteArray[index | 0];

3 index = (((index x 4096) |0) & (32%1024%x1024-1))10;

4 localdunk "= probeTable[index|0]]|0;

5}

Listing 2: Exploiting Speculative Execution via JavaScript.

18

Speculative execution: making CPUs faster.

Out-of-order execution: Run faster Context A ‘ Context B
instructions before slower instructions if call [function) Zcall [function)w, §
. : OD) . i 8
there is no side effect on the result. & | =
function A S— spectre gadget < g
Speculative execution: If calculating which function B ™" legit function

branch to follow is more expensive than the
resulting branches, start calculating most

likely branch before deciding which one to

follow.

Fig. 2: The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes
its prediction on the basis of training data from context A,
leading to speculative execution at an attacker-chosen address
which corresponds to the location of the Spectre gadget in the
victim’s address space.

1 if (index < simpleByteArray.length) {

2
3
4
5

index = simpleByteArray[index | 0];
index = (((index x 4096) |0) & (32%1024%x1024-1))10;
localdunk "= probeTable[index|0]]|0;

}

Listing 2: Exploiting Speculative Execution via JavaScript.

19

Spectre and speculative execution.

) if <in bounds>
e Qut-of-order execution: Run faster

instructions before slower instructions if

there is no side effect on the result.

e Speculative execution: If calculating which

branch to follow is more expensive than the Fig. 1: Before the correct outcome of the bounds check is
known, the branch predictor continues with the most likely
resu[ting branches, start Ca[cu[ating most branch target, leading to an overall execution speed-up if
the outcome was correctly predicted. However, if the bounds
llkely branch before deciding which one to check is incorrectly predicted as true, an attacker can leak
secret information in certain scenarios.
follow.
1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * 4096)|0) & (32%x1024%1024-1))|0;
4 localdunk "= probeTable[index|0]]|0;
5}

Listing 2: Exploiting Speculative Execution via JavaScript.

20

Variant 1: Violating JavaScript's Sandbox

Teach JIT that index is in bounds for simpleByteArray[] SO it

can omit bounds check in next line. Want length uncached for
index will be in-bounds on training passes, attack passes
and out-of-bO{nds on attack passes /

if (index < simpleByteArray.lengch)/(/
index = simpleByteArray[index | O0];

Do the out-of-bounds read on attack passes!

index = (((index * TABLEl STRIRE) |0) & (TABLEl BYTES-1))0;
localJunk “= probeTable[index | loiiél 0; \“|0” is a JS optimizer
) 4096 bytes (= page size) trick
(makes result an
Need to use the result so the integer)

operations aren’t optimized

This AND keeps the JIT from adding
away

Leak out-of-bounds read result into cache ~ unwanted bounds checks on the next
state! line

Credit: Jann Horn, Real World Crypto 2018

21

Spectre: harder to mitigate than Meltdown.

Spectre is here to stay
e Prevent speculative execution altogether? An analysis of side-channels and speculative execution

Would be a serious performance hit for Intel e T e i
rcmilroy@google.com jarin@google.com tebbi@google.com
and other CPU manufacturers. Ben L. Titzer Toon Verwaest
Google Google

Y Empl_oy bet‘ter process |sol_at|on W|th|n titzer@google.com verwaest@google.com

cpe . . February 15, 2019
specific applications and use cases?

Abstract

Exam pl.e: Ch rome exeCUteS eaCh browser The recent discovery of the Spectre and Meltdown attacks represents a watershed moment not

just for the field of Computer Security, but also of Programming Languages. This paper explores
speculative side-channel attacks and their implications for programming languages. These attacks

tab as a Se pa rate C PU p ro Cess . leak information through micro-architectural side-channels which we show are not mere bugs, but in
fact lie at the foundation of optimization. We identify three open problems, (1) finding side-channels,
(2) understanding speculative vulnerabilities, and (3) mitigating them. For (1) we introduce a math-
ematical meta-model that clarifies the source of side-channels in simulations and CPUs. For (2) we
introduce an architectural model with speculative semantics to study recently-discovered vulnera-
bilities. For (3) we explore and evaluate software mitigations and prove one correct for this model.
Our analysis is informed by extensive offensive research and defensive implementation work for V8,
the production JavaScript virtual machine in Chrome. Straightforward extensions to model real
hardware suggest these vulnerabilities present formidable challenges for effective, efficient mitigation.
As a result of our work, we now believe that speculative vulnerabilities on today’s hardware defeat
all language-enforced confidentiality with no known comprehensive software mitigations, as we have
discovered that untrusted code can construct a universal read gadget to read all memory in the same
address space through side-channels. In the face of this reality, we have shifted the security model of
the Chrome web browser and V8 to process isolation.

22

Graphic courtesy of Paul Kocher

Exponential growth

Abstractions

N Applications
) Al
lerar,'es Jfra

o
o Languages
s

o

[aa]

Compilers

Operating Systems

¥
§ Drivers
~
Q
N

g Circuit board

CPU architectures
Chip
Microarchitectures

Logic block
Transistors

meWOrks

Society
People

Business objectives

Nation states

Security goals

Clouds

Foundatio

=&'&'~V~

suondwnsse 1 sapuapuadaq

Abstraction creates
security challenges

Security-critical details
hidden in layers

Needs of distant
layers unclear

People specialize then
miss big picture

Economics don’t fund
adequate investment

Risks in other layers
deter improvements

Changes aren’t
communicated across
layers

23

Next time:
Browser
Security Model

The first section of Part 4 of this course:
Web Security.

