
Mobile Device and Platform
Security – Part II

John Mitchell

CS 155 Spring 2018

Two lectures on mobile security
› Introduction: platforms and trends
› Threat categories

§ Physical, platform malware, malicious apps
› Defense against physical theft
› Malware threats
› System architecture and defenses

§ Apple iOS security features and app security model
§ Android security features and app security model

› Security app development
§ WebView – secure app and web interface dev
§ Device fragmentation

Thurs

Tues

ANDROID

History and early decisions

Android history
› Android, Inc founded by Andy Rubin around 2005

§ Worked with HTC-built device with a physical keyboard
§ Scrapped Blackberry-like phone when iPhone came out
§ First Android phone HTC Dream, Oct 2008 (T-Mobile G1):

touchscreen and keyboard
› Open-source software project
› Backed and acquired by Google

HTC Dream
› First phone had

§ Android 1.6 (Donut)
§ 3.15 megapixel rear

camera with auto-focus
§ 3.2 inch touchscreen
§ Gmail, Google Maps,

Search, Google Talk, You
Tube, calendar, contacts,
alarm

Android ecosystem
› Open-source software distributed by Google

§ Business goal: increase number of users and devices linked to
core Google products

› Multiple hardware vendors
§ Each customize software for their products

› Open marketplace for apps
§ Aim for scale

Aside: open-source OS successful pre-mobile

App market
› Self-signed apps
› App permissions

§ granted on user
installation

› Open market
§ Bad apps may show up on market
§ Shifts focus from remote exploit to privilege escalation

ANDROID PLATFORM

Theft and loss protection

Predictive security
§ Look for malicious code in apps
Privacy advisor
§ See if app can access private information
Locate lost phone
§ Map location and make a sound
Lock and wipe
§ Web interface to remotely remove data
§ Data backup
§ Store and retrieve from cloud

https://www.lookout.com/android

Device lock and unlock
› Similar PIN and fingerprint
› Fingerprint API lets users

§ Unlock device
§ Securely sign in to apps
§ Use Android Pay
§ Purchase on Play Store

ANDROID PLATFORM

Managed code

Managed code overview
› Java programming language
› Bytecode execution environment

§ Verifier
§ Run-time checks
§ Memory safety

› Permission checking
§ Stack inspection

Java language overview
Classes and Inheritance
§ Object features
§ Encapsulation
§ Inheritance
Types and Subtyping
§ Primitive and ref types
§ Interfaces; arrays
§ Exception hierarchy
Generics
§ Subtype polymorphism.

generic programming

Virtual machine
§ Loader and initialization
§ Linker and verifier
§ Bytecode interpreter
Security
§ Java “sandbox”
§ Type safety
§ Stack inspection

Managed code overview

Java programming language
Bytecode execution environment
§ Verifier
§ Run-time checks
§ Memory safety

Permission checking
§ Stack inspection

Java Implementation
› Compiler and Virtual Machine

§ Compiler produces bytecode
§ Virtual machine loads classes on demand, verifies bytecode

properties, interprets bytecode

› Why this design?
§ Bytecode interpreter “manages” code execution safely
§ Minimize machine-dependent part of implementation

A.classA.java Java
Compiler

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Java Virtual Machine Architecture

JVM Linker and Verifier
› Linker

§ Adds compiled class or interface to runtime system
§ Creates static fields and initializes them
§ Resolves names
› Checks symbolic names and replaces with direct references

› Verifier
§ Check bytecode of a class or interface before loaded
§ Throw exception if error occurs

Verifier
› Bytecode may not come from standard compiler

§ Evil hacker may write dangerous bytecode
› Verifier checks correctness of bytecode

§ Every instruction must have a valid operation code
§ Every branch instruction must branch to the start of some other

instruction, not middle of instruction
§ Every method must have a structurally correct signature
§ Every instruction obeys the Java type discipline
› Last condition is fairly complicated .

Bytecode interpreter / JIT
› Standard Java virtual machine interprets instructions

§ Perform run-time checks such as array bounds
§ Possible to compile bytecode class file to native code

› Java programs can call native methods
§ Typically functions written in C

› Just-in-time compiler (JIT)
§ Translate set of bytecodes into native code, including checks

› Ahead-of-time (AOT)
§ Similar principles but prior to loading into runtime system

Type Safety of Java
› Run-time type checking

§ All casts are checked to make sure type safe
§ All array references are checked to make sure the array index is

within the array bounds
§ References are tested to make sure they are not null before they

are dereferenced.
› Additional features

§ Automatic garbage collection
§ No pointer arithmetic

If program accesses memory, that memory is allocated
to the program and declared with correct type

Managed code overview

Java programming language
Bytecode execution environment
§ Verifier
§ Run-time checks
§ Memory safety

Permission checking
§ Stack inspection

Managed code overview
› Java programming language
› Bytecode execution environment

§ Verifier
§ Run-time checks
§ Memory safety

› Permission checking
§ Stack inspection

ANDROID PLATFORM

Platform security model

Android platform model

Architecture components
§ Operating system, runtime environment
§ Application sandbox
§ Exploit prevention

Permission system
§ Granted at install time
§ Checked at run time

Inter-app communication
§ Intent system
§ Permission redelegation (intent input checking)

Android platform summary
§ Linux kernel, browser, SQL-lite database
§ Software for secure network communication
› Open SSL, Bouncy Castle crypto API and Java library

§ C language infrastructure
§ Java platform for running applications
› Dalvik bytecode, virtual machine / Android runtime (ART)

Managed code runs in app sandbox

Application development process: source code to bytecode

Security Features
› Isolation

§ Multi-user Linux operating system
§ Each application normally runs as a different user

› Communication between applications
§ May share same Linux user ID
› Access files from each other
› May share same Linux process and Dalvik VM

§ Communicate through application framework
› “Intents,” based on Binder, discussed in a few slides

Application sandbox
› Application sandbox

§ Each application runs with its UID in its own runtime environment
› Provides CPU protection, memory protection
› Only ping, zygote (spawn another process) run as root

› Applications announce permission requirement
§ Create a whitelist model – user grants access at install time

› Communication between applications
§ May share same Linux user ID
› Access files from each other
› May share same Linux process and runtime environment

§ Or communicate through application framework
› “Intents,” reference monitor checks permissions

App

Android platform model

Architecture components
§ Operating system, runtime environment
§ Application sandbox
§ Exploit prevention

Permission system
§ Granted at install time
§ Checked at run time

Inter-app communication
§ Intent system
§ Permission redelegation (intent input checking)

Exploit prevention
› Open source: public review, no obscurity
› Goals

§ Prevent remote attacks, privilege escalation
§ Secure drivers, media codecs, new and custom features

› Overflow prevention
§ ProPolice stack protection
› First on the ARM architecture

§ Some heap overflow protections
› Chunk consolidation in DL malloc (from OpenBSD)

› ASLR
§ Avoided in initial release
› Many pre-linked images for performance

§ Later developed and contributed by Bojinov, Boneh

dlmalloc (Doug Lea)
› Stores meta data in band
› Heap consolidation attack

§ Heap overflow can overwrite pointers to previous and next
unconsolidated chunks

§ Overwriting these pointers allows remote code execution
› Change to improve security

§ Check integrity of forward and backward pointers
› Simply check that back-forward-back = back, f-b-f=f

§ Increases the difficulty of heap overflow

Android platform model

Architecture components
§ Operating system, runtime environment
§ Application sandbox
§ Exploit prevention

Permission system
§ Granted at install time
§ Checked at run time

Inter-app communication
§ Intent system
§ Permission redelegation (intent input checking)

Android market
› Self-signed apps
› App permissions granted on user installation
› Open market

§ Bad applications may show up on market
§ Shifts focus from remote exploit to privilege escalation

Android permissions

› Example of permissions provided by Android

§ “android.permission.INTERNET”

§ “android.permission.READ_EXTERNAL_STORAGE

§ “android.permission.SEND_SMS”

§ “android.permission.BLUETOOTH”

› Also possible to define custom permissions

Android permission model

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Android permission model

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Android platform model

Architecture components
§ Operating system, runtime environment
§ Application sandbox
§ Exploit prevention

Permission system
§ Granted at install time
§ Checked at run time

Inter-app communication
§ Intent system
§ Permission redelegation (intent input checking)

Application development concepts
› Activity – one-user task

§ Example: scroll through your inbox
§ Email client comprises many activities

› Intents – asynchronous messaging system
§ Fire an intent to switch from one activity to another
§ Example: email app has inbox, compose activity, viewer activity
› User click on inbox entry fires an intent to the viewer activity, which then
allows user to view that email

Android Intents
› Intent is a bundle of information, e.g.,

§ action to be taken
§ data to act on
§ category of component to handle the intent
§ instructions on how to launch a target activity

› Routing can be
§ Explicit: delivered only to a specific receiver
§ Implicit: all components that have registered to receive that

action will get the message

Layers of security
§ Each application executes as its own user identity
§ Android middleware has reference monitor that mediates the

establishment of inter-component communication (ICC)

Source: Penn State group Android security paper

Source: Penn State group, Android security tutorial

Security issues with intents
› Sender of an intent may

§ Verify that the recipient has a permission by specifying a
permission with the method call

§ Use explicit intents to send the message to a single component

› Receivers must implement appropriate input checking to handle
malicious intents

Attack: Permission redelegation
› Idea: an application without a permission gains additional

privileges through another application
› Example of the “confused deputy” problem

Permission redelegation

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Permission redelegation

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

How could this happen?

› App w/ permissions exposes a public interface

› Study in 2011

§ Examine 872 apps

§ 320 of these (37%) have permissions and at least one type of public
component

§ Construct attacks using 15 vulnerabilities in 5 apps

› Reference

§ Permission Re-Delegation: Attacks and Defenses, Adrienne Felt, Helen
Wang, Alexander Moshchuk, Steven Hanna, Erika Chin, Usenix 2011

Example: power control widget
› Default widgets provided by Android, present on all devices

› Can change Wi-fi, BT, GPS, Data Sync, Screen Brightness with
only one click

› Uses Intent to communicate the event of switching settings
› A malicious app without permissions can send a fake Intent to

the Power Control Widget, simulating click to switch settings

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Vulnerable versions (in red)

Principle of least privilege helps but is not solution by itself
Apps with permissions need to manage security

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Android platform model

Architecture components
§ Operating system, runtime environment
§ Application sandbox
§ Exploit prevention

Permission system
§ Granted at install time
§ Checked at run time

Inter-app communication
§ Intent system
§ Permission redelegation (intent input checking)

ANDROID PLATFORM

Mobile web apps

Outline

› Mobile web apps

§ Use WebView Java objects, implemented based on WebKit browser

§ “JavaScript bridge” lets web content use Java objects exported by app

› Security problems

§ WebView does not isolate bridge access by frame or origin

§ App environment may leak sensitive web information in URLs

§ WebView does not provide security indicators

§ …

Mobile Web Apps

Mobile web app: embeds a fully functional web browser as a
UI element

Obj foo = new Object();
addJavascriptInterface(foo, ‘f’);

JavaScript Bridge

Java
JavaScript

JavaScript Bridge

Java
JavaScript

f.bar();

Security Concerns

Who can access the bridge?

§ Everyone Isolated in Browser

No origin distinction in WebView calls

Java

JavaScript

f.bar();

Analysis of Public Apps
› How many mobile web apps?
› How many use JavaScript Bridge?
› How many vulnerable?

Experimental Results

› 737,828 free apps from Google Play (Oct ’13)

› 563,109 apps embed a browser

› 219,404 use the JavaScript Bridge

› 107,974 have at least one security violation

Most significant vulnerabilities

1. Loading untrusted web content

2. Leaking URLs to foreign apps

3. Exposing state changing navigation to foreign apps

Loading untrusted web content

“You should restrict the web-pages that
can load inside your WebView with a
whitelist.”

- Facebook

“…only loading content from trusted
sources into WebView will help protect
users.”

- Adrian Ludwig, Google

Forms of navigation

// In app code
myWebView.loadUrl(“foo.com”);

<!-- In HTML -->
click!

<!-- More HTML -->
<iframe src=“foo.com”/>

// In JavaScript
window.location = “foo.com”;

Implementing navigation whitelist

public boolean shouldOverrideUrlLoading(
WebView view, String url){

// False -> Load URL in WebView
// True -> Prevent the URL load

}

public boolean shouldOverrideUrlLoading(
WebView view, String url){

String host = new URL(url).getHost();
if(host.equals(“stanford.edu”))

return false;
log(“Overrode URL: ” + url);
return true;

}

Reach Untrusted Content?
› 40,084 apps with full URLs and use JavaScript Bridge
› 13,683 apps (34%) can reach untrusted content

Exposing sensitive information in URLs
› Android apps communicate using intents

§ An implicit intent is delivered to any app whose filter matches
§ An intent filter can declare zero or more <data> elements, such as
› mimeType - e.g., android:mimeType="video/mpeg“
› scheme - e.g., android:scheme="http"

› When a WebView loads a page, an intent is sent to the app
§ Another app can register a filter that might match this intent
§ If the URL contains sensitive information, this information can be

stolen

Example

OAuth protocol for browser-based web authentication

§ Used by Google, Facebook, LinkedIn and other identity providers

§ In some configurations, may return a session token as part of a URL

Mobile app developers may try to use OAuth through WebView

§ A form of session token is returned as part of a URL

§ Delivered through an implicit intent

§ May reach any app with filter that specifies protocol scheme my_oauth

Malicious app may steal a session token from a vulnerable app

§ Malicious app registers an implicit intent with scheme my_oauth

§ Waits for a URL containing the form of session token returned by OAuth.

Handling SSL Errors

onReceivedSslError

1. handler.proceed()
2. handler.cancel()
3. view.loadUrl(...)

Mishandling SSL Errors

117,974 apps implement onReceivedSslError
29,652 apps (25%) must ignore errors

Vulnerability % Relevant % Vulnerable

Unsafe Nav 15 34

HTTP 40 56

Unsafe HTTPS 27 29

Primary results

Popularity

Outdated Apps

29%
unsafe nav

Libraries

51%
HTTP

53%
unsafe HTTPS

Additional security issues

Based on 998,286 free web apps from June 2014

Summary
› Mobile web apps

§ Use WebView Java objects, implemented based on WebKit browser
§ “JavaScript bridge” lets web content use Java objects exported by app

› Security problems
§ WebView does not isolate bridge access by frame or origin
§ App environment may leak sensitive web information in URLs
§ WebView does not provide security indicators
§ …
§ Many browser security mechanism are not automatically provided by

WebView

ANDROID PLATFORM

Target fragmentation

Summary
› Android apps can run using outdated OS behavior

- The large majority of Android apps do this
- Including popular and well maintained apps

› Outdated security code invisibly permeates the app ecosystem
- “Patched” security vulnerabilities still exist in the wild
- “Risky by default” behavior is widespread

›

“If the device is running Android 6.0 or higher… [the app] must
request each dangerous permission that it needs while the app is
running.

- Android Developer Reference

“If the device is running Android 6.0 or higher and your app's
target SDK is 6.0 or higher [the app] must request each
dangerous permission that it needs while the app is running.

- Android Developer Reference

App
Collecte

d

Outdatedness

App
Update

d

Negligent
Outdatedness

Android
5.0

Released

Android
5.1

Released

Android
6.0

Released

Fragment Injection

Vulnerable App

PreferenceActivity

Attacked

Fragment

Malicious Intent

Extra.SHOW_FRAGMENT “Attacked

Fragment”

Extra.SHOW_FRAG_ARG

Data
Other

Extras

securityintelligence.com/new-vulnerability-android-framework-fragment-injection/

Fragment Injection
› Fixed in Android 4.4
› Developers implement isValidFragment to authorize fragments

// Put this in your app
protected boolean isValidFragment(String fName){

return MyFrag.class.getName().equals(fName);
}

Fragment Injection

›
Vulnerable if:

- Targets 4.3 or lower (31%)
- Some class inherits from PreferenceActivity (4.8%)
- That class is exported (1.1%)
- That class does not override isValidFragment (0.55%)

4.2% of apps vulnerable if no fix was ever implemented

Mixed Content in WebView
› Major web browsers block Mixed Content
› In Android 5.0, WebViews block Mixed Content by default
› Can override default with setMixedContentMode()

SOP for file:// URLs in WebView
› Android 4.1 separate file:// URLs are treated as unique origins
› Can override with setAllowFileAccessFromFileURLs()

Summary
› Android apps can run using outdated OS behavior

- The large majority of Android apps do this
- Including popular and well maintained apps

› Outdated security code invisibly permeates the app ecosystem
- “Patched” security vulnerabilities still exist in the wild
- “Risky by default” behavior is widespread

›

Two lectures on mobile security
› Introduction: platforms and trends
› Threat categories

§ Physical, platform malware, malicious apps
› Defense against physical theft
› Malware threats
› System architecture and defenses

§ Apple iOS security features and app security model
§ Android security features and app security model

› Security app development
§ WebView – secure app and web interface dev
§ Device fragmentation

Thurs

Tues

Comparison: iOS vs Android
› App approval process

§ Android apps from open app store
§ iOS vendor-controlled store of vetted apps

› Application permissions
§ Android permission based on install-time manifest
§ All iOS apps have same set of “sandbox” privileges

› App programming language
§ Android apps written in Java; no buffer overflow…
§ iOS apps written in Objective-C

Comparison

iOS Android Windows
Unix x x
Windows
Open market x
Closed market x
Vendor signed x
Self-signed x
User approval of permissions x
Managed code x
Native code x

Comparison

iOS Android Windows
Unix x x
Windows x
Open market x
Closed market x x
Vendor signed x
Self-signed x x
User approval of permissions x 7-> 8
Managed code x x
Native code x

Two lectures on mobile security
› Introduction: platforms and trends
› Threat categories

§ Physical, platform malware, malicious apps
› Defense against physical theft
› Malware threats
› System architecture and defenses

§ Apple iOS security features and app security model
§ Android security features and app security model

› Security app development
§ WebView – secure app and web interface dev
§ Device fragmentation

Thurs

Tues

