CS 155 Spring 2018

Mobile Device and Platform
Security — Part |

John Mitchell

Two lectures on mobile security

Introduction: platforms and trends —
Threat categories

= Physical, platform malware, malicious apps

Defense against physical theft

Malware threats

System architecture and defenses

= Apple iOS security features and app security model |
= Android security features and app security model
Security app development

= WebView — secure app and web interface dev

> Thurs

~— Tues

= Device fragmentation —

ANDROID

History and early decisions

Android history

Android, Inc founded by Andy Rubin around 2005
= Worked with HTC-built device with a physical keyboard
= Scrapped Blackberry-like phone when iPhone came out

" First Android phone HTC Dream, Oct 2008 (T-Mobile G1):
touchscreen and keyboard

Open-source software project
Backed and acquired by Google

HTC Dream

First phone had
= Android 1.6 (Donut)

= 3.15 megapixel rear
camera with auto-focus

= 3.2 inch touchscreen

= Gmail, Google Maps,
Search, Google Talk, You
Tube, calendar, contacts,
alarm

1 | 0666660666006
06600066006
6006666666
N C06E60006ED

CAEEEEL AL

Android ecosystem

Open-source software distributed by Google

= Business goal: increase number of users and devices linked to
core Google products

Multiple hardware vendors

" Each customize software for their products
Open marketplace for apps

= Aim for scale

Aside: open-source OS successful pre-mobile

App market

Self-signed apps

App permissions /#\h Android Market
= granted on user —
installation h
Open market Ve GOOS[Q play

= Bad apps may show up on

= Shifts focus from remote exploit to privilege escalation

ANDROID PLATFORM

Theft and loss protection

Predictive security
= Look for malicious code in apps

o
Privacy advisor e

= See if app can access private information
Locate lost phone 7 @ipb.d;w
= Map location and make a sound
Lock and wipe e

= Web interface to remotely remove data g

= Data backup A suwonns

&
«"’@)\ Privacy Advisor

= Store and retrieve from cloud

https://www.lookout.com/android

Device lock and unlock

Similar PIN and fingerprint
Fingerprint API lets users

= Unlock device

= Securely sign in to apps

= Use Android Pay

" Purchase on Play Store

ANDROID PLATFORM

Managed code

Managed code overview

» Java programming language

» Bytecode execution environment
= Verifier
" Run-time checks
" Memory safety

» Permission checking

= Stack inspection

Java language overview

Classes and Inheritance
= Object features

= Encapsulation

" |nheritance

Types and Subtyping

= Primitive and ref types
= |nterfaces; arrays

= Exception hierarchy
Generics

= Subtype polymorphism.
generic programming

Virtual machine

= Loader and initialization
= Linker and verifier

= Bytecode interpreter

Security

= Java “sandbox”
= Type safety

= Stack inspection

Managed code overview

Java programming language
mm) Bytecode execution environment
= Verifier
= Run-time checks
= Memory safety
Permission checking
= Stack inspection

Java Implementation

Compiler and Virtual Machine
= Compiler produces bytecode

" Virtual machine loads classes on demand, verifies bytecode
properties, interprets bytecode

Why this design?
= Bytecode interpreter “manages” code execution safely
" Minimize machine-dependent part of implementation

Java Virtual Machine Architecture

Java
Compiler

Compile source code

A 4

v

Java Virtual Machine

Verifier

Linker

Bytecode Interpreter

JVM Linker and Verifier

Linker
= Adds compiled class or interface to runtime system
= Creates static fields and initializes them

= Resolves hames

» Checks symbolic names and replaces with direct references
Verifier
= Check bytecode of a class or interface before loaded

" Throw exception if error occurs

Verifier

Bytecode may not come from standard compiler

= Evil hacker may write dangerous bytecode

Verifier checks correctness of bytecode

= Every instruction must have a valid operation code

= Every branch instruction must branch to the start of some other
instruction, not middle of instruction

" Every method must have a structurally correct signature

" Every instruction obeys the Java type discipline
» Last condition is fairly complicated

Bytecode interpreter / JIT

Standard Java virtual machine interprets instructions
= Perform run-time checks such as array bounds

= Possible to compile bytecode class file to native code
Java programs can call native methods

= Typically functions written in C

Just-in-time compiler (JIT)

= Translate set of bytecodes into native code, including checks
Ahead-of-time (AOT)

: Similar principles but prior to loading into runtime system

Type Safety of Java

Run-time type checking
= All casts are checked to make sure type safe

= All array references are checked to make sure the array index is
within the array bounds

= References are tested to make sure they are not null before they
are dereferenced.

Additional features
= Automatic garbage collection
= No pointer arithmetic

If program accesses memory, that memory is allocated
to the program and declared with correct type

Managed code overview

Java programming language
Bytecode execution environment
= \erifier
= Run-time checks
= Memory safety
mm) Permission checking
= Stack inspection

Managed code overview

» Java programming language

» Bytecode execution environment
= Verifier
" Run-time checks
" Memory safety

» Permission checking

= Stack inspection

ANDROID PLATFORM

Platform security model

Android platform model

Architecture components

Operating system, runtime environment
Application sandbox

Exploit prevention

Permission system

Granted at install time
Checked at run time

Inter-app communication

Intent system
Permission redelegation (intent input checking)

Android platform summary

= Linux kernel, browser, SQL-lite database

= Software for secure network communication
> Open SSL, Bouncy Castle crypto APl and Java library
" Clanguage infrastructure

= Java platform for running applications
» Dalvik bytecode, virtual machine / Android runtime (ART)

APPLICATIONS

Contacts Phone

Browser

APPLICATION FRAMEWDORK

Activity Manager Ma':g;::

Package Manager Telephony

Resource
Manager

Manager

Content
Providers

Location

Notification
Manager

Manager

LIBRARIES

Surface Manager Media SQLite
Framework

OpenGL | ES FreeType WebKit

SGL SSL libc

ANDROID RUNTIME
Core Libraries

Machine

LINUX KERNEL

DDi:iQ'EZ Camera Driver

Keypad Driver WiFi Driver

Flash Memory Binder (IPC)
Driver Driver

Audio Power
Drivers Management

Managed code runs in app sandbox

Application development process: source code to bytecode

Security Features

Isolation
" Multi-user Linux operating system
= Each application normally runs as a different user

Communication between applications

" May share same Linux user ID
> Access files from each other
> May share same Linux process and Dalvik VM

= Communicate through application framework
> “Intents,” based on Binder, discussed in a few slides

Application sandbox

Application sandbox

= Each application runs with its UID in its own runtime environment
> Provides CPU protection, memory protection
> Only ping, zygote (spawn another process) run as root

Applications announce permission requirement

= Create a whitelist model — user grants access at install time
Communication between applications

= May share same Linux user ID

» Access files from each other
» May share same Linux process and runtime environment

= Or communicate through application framework
» “Intents,” reference monitor checks permissions

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK APPLICATION FRAMEWORK

Activity Window Content View Notification Activity Window Content View Notification

Manager Manager Providers System Manager Manager Manager Providers System Manager
Location XMPP

Telephony Resource
Manager Service

Package
Manager

Package Telephony Resource Location XMPP
Manager Manager Manager Manager Service Manager Manager
ANDROID RUNTIME

ANDROID RUNTIME
Core

Libraries

LIBRARIES

Surface Media . Core
Manager Framework s Libraries

OpenGL|ES FreeType WebKit E

LINUX KERNEL

Bluetooth Flash Memory Binder (IPC)

Display Camera

Driver Driver Driver Driver

Driver

Audio Power

usB Keypad WiFi
Management

Driver Driver Driver Drivers

Android platform model

Architecture components
= (QOperating system, runtime environment
= Application sandbox

- - Exploit prevention

Permission system
= Granted at install time
= Checked at run time

Inter-app communication
= |ntent system
= Permission redelegation (intent input checking)

Exploit prevention

Open source: public review, no obscurity

Goals

= Prevent remote attacks, privilege escalation

= Secure drivers, media codecs, new and custom features
Overflow prevention

= ProPolice stack protection
> First on the ARM architecture

= Some heap overflow protections
> Chunk consolidation in DL malloc (from OpenBSD)

ASLR

= Avoided in initial release
> Many pre-linked images for performance

= Later developed and contributed by Bojinov, Boneh

>

>

dlmalloc (Doug Lea)

Stores meta data in band
Heap consolidation attack

" Heap overflow can overwrite pointers to previous and next
unconsolidated chunks

= Overwriting these pointers allows remote code execution
Change to improve security

" Check integrity of forward and backward pointers
» Simply check that back-forward-back = back, f-b-f=f

" Increases the difficulty of heap overflow

Android platform model

Architecture components

Operating system, runtime environment
Application sandbox

Exploit prevention

=) Permission system

Granted at install time
Checked at run time

Inter-app communication

Intent system
Permission redelegation (intent input checking)

Android market

Self-signed apps

App permissions granted on user installation
Open market

= Bad applications may show up on market

= Shifts focus from remote exploit to privilege escalation

Android permissions

Example of permissions provided by Android

= “android.permission.INTERNET”

= “android.permission.READ _EXTERNAL_STORAGE
= “android.permission.SEND_SMS”

= “android.permission.BLUETOOTH”

Also possible to define custom permissions

Android permission model

&

m Google Maps

Accept & download

Read contact data, write contact data >

q’_:____T___ mission android:name="andreoid.permission .E!-:C_"__’_':_" Phone calls . .
- Read phone state and identity >

d es-permission android:name="android.permission.INTERNET" / >

Netwaork communication
NEW: Control Near Field
Communication

Full Internet access >

Seeall ~

https://www.owasp.org/images/3/3e/Danelon_ OWASP_EU_Tour_2013.pdf

Android permission model

() | 4
Browser Process P CoolApp Process 5 CoolAddon Process 7 system_server

Dalvik STy : Dalvik Native PackageManager
VM 2 e - VM Code

NetworkManager

UID: app_0] UID: app_12 UID: app_19

ActivityManager

open() Permission for Binder call to ‘ WifiManager
permissions another app checked WifiManager API

checked by by system_server or app itself call permissions
kernel checked by

system_server

UID: system

Filesystem Wireless network driver

Linux kernel

https://www.owasp.org/images/3/3e/Danelon_ OWASP_EU_Tour_2013.pdf

Android platform model

Architecture components
= (QOperating system, runtime environment
= Application sandbox
= Exploit prevention

Permission system
= Granted at install time
= Checked at run time

=) Inter-app communication

= |ntent system
= Permission redelegation (intent input checking)

Application development concepts

Activity — one-user task
" Example: scroll through your inbox
= Email client comprises many activities

Intents — asynchronous messaging system
" Fire an intent to switch from one activity to another

= Example: email app has inbox, compose activity, viewer activity

» User click on inbox entry fires an intent to the viewer activity, which then
allows user to view that email

Android Intents

Intent is a bundle of information, e.g.,

= action to be taken

= data to act on

= category of component to handle the intent

" instructions on how to launch a target activity
Routing can be

= Explicit: delivered only to a specific receiver

= Implicit: all components that have registered to receive that
action will get the message

Android applications
FriendTracker application FriendViewer application Contacts application

T

Android middleware

user: app_11 i user: app_12 | user: app_4
home: /data/data/friendtracker i home: /data/data/friendviewer i home: /data/data/contacts

Linux system

Layers of security
= Each application executes as its own user identity

= Android middleware has reference monitor that mediates the
establishment of inter-component communication (ICC)

Source: Penn State group Android security paper

MAC Policy Enforcementin Android. This is how applications access
components of other applications via the reference monitor. Component A
can access components B and C if permission labels of application 1 are equal
or dominate labels of application 2.

Source: Penn State group, Android security tutorial

Security issues with intents

» Sender of an intent may

= Verify that the recipient has a permission by specifying a
permission with the method call

= Use explicit intents to send the message to a single component

» Receivers must implement appropriate input checking to handle
malicious intents

Attack: Permission redelegation

» ldea: an application without a permission gains additional
privileges through another application

» Example of the “confused deputy” problem

Permission redelegation

Access
Wifi ®

Requested
permission
during
install

WiFi Manager
(Strict Sheriff)

-
!

WifiControl App

' Access
A2\ Wifi ?
=
No
permissions

during
install

AttackerApp

https://www.owasp.org/images/3/3e/Danelon_ OWASP_EU_Tour_2013.pdf

Permission redelegation

Access
WiFi Manager

Wifi
Confused
(Strict Sheriff) /; WifiControlApp Deputy

WifiControlApp granted AttackerApp |BAGETE P T
permission without checking

https://www.owasp.org/images/3/3e/Danelon_ OWASP_EU_Tour_2013.pdf

How could this happen?

App w/ permissions exposes a public interface
Study in 2011

= Examine 872 apps

= 320 of these (37%) have permissions and at least one type of public
component

= Construct attacks using 15 vulnerabilities in 5 apps
Reference

= Permission Re-Delegation: Attacks and Defenses, Adrienne Felt, Helen
Wang, Alexander Moshchuk, Steven Hanna, Erika Chin, Usenix 2011

Example: power control widget

Default widgets provided by Android, present on all devices

< ® 2 4L

Can change Wi-fi, BT, GPS, Data Sync, Screen Brightness with
only one click

Uses Intent to communicate the event of switching settings

A malicious app without permissions can send a fake Intent to
the Power Control Widget, simulating click to switch settings

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Vulnerable versions (in red)

Version Codename API Distribution

1.6 Donut 4 0.10%

2.1 Eclair 7 1.50%

2.2 Froyo 8 3.20%

23-232 9 0.10%
Gingerbread

2.33-23.7 10 36.40%

3.2 Honeycomb 13 0.10%

4.0.3-4.04 Ice Cream Sandwich 15 25.60%

41.x 16 29.00%
Jelly Bean

4,2.% 17 4.00%

Principle of least privilege helps but is not solution by itself
Apps with permissions need to manage security

https://www.owasp.org/images/3/3e/Danelon_OWASP_EU_Tour_2013.pdf

Android platform model

Architecture components

Operating system, runtime environment
Application sandbox

Exploit prevention

Permission system

Granted at install time
Checked at run time

Inter-app communication

Intent system
Permission redelegation (intent input checking)

ANDROID PLATFORM

Mobile web apps

Outline

Mobile web apps
= Use WebView Java objects, implemented based on WebKit browser
= “JavaScript bridge” lets web content use Java objects exported by app

Security problems

= WebView does not isolate bridge access by frame or origin

= App environment may leak sensitive web information in URLs
= WebView does not provide security indicators

Mobile Web Apps

Mobile web app: embeds a fully functional web browser as a
Ul element

i 94 W 3:57

Bagels

L 1. 1zzy's Brooklyn Bagels
@ ?1 I3 L0 300 Reviews $
NS4 77 S California Ave, Palo Alto
a Bagels, Kosher
88 Order Pickup

2. House of Bagels

CID000 5Reviews $
2190 W Bayshore Rd, Palo Alto

Bagels

& Hot and New

3. New York New York

Sandwiches $
J L0 55Reviews

125 University Ave, Palo Alto

Breakfast & Brunch, Sandwiches, Burgers

CdaN>0ID

W 4. Philz Coffee
L 889 Reviews $$

3191 Middlefield Rd, Palo Alto
Coffee & Tea

5. House of Bagels
3T 107 Reviews s

1712 Miramonte Ave, Mountain View

Bagels, Breakfast & Brunch, Sandwiches

JavaScript Bridge

Obj foo = new Object();
addJavascriptInterface(foo, ‘f’);

0 94 W 357

Wz 1. Izzy's Brooklyn Bagels
<), ?! IS0 300 Reviews $
NS 77 S Califoria Ave, Palo Alto

Bagels, Kosher
5 icku

2. House of Bagels

OO0 srevews $
2190 W Bayshore Rd, Palo Alto

Bagels

& Hotand New
3. New York New York
Sandwiches $

[| | %] 55 Reviews

125 University Ave, Palo Alto

Breakfast & Brunch, Sandwiches, Burgers

4. Philz Coffee

EIEIEIEIET 889 Reviews $$

3191 Middlefield Rd, Palo Alto
Coffee &Tea

5. House of Bagels
4| | %] 107 Reviews $

1712 Miramonte Ave, Mountain View
Bagels, Breakfast & Brunch, Sandwiches

Java “

JavaScript

JavaScript Bridge

f.bar();

0 94 W 357

1. Izzy's Brooklyn Bagels
EIEIEIEI T 300 Reviews $
477S Califomia Ave, Pelo Alto

Bagels, Kosher

8 Order Pickup

2. House of Bagels

DOO00 srevews $
2190 W Bayshore Rd, Palo Alto

Bagels

& Hotand New

3. New York New York

Sandwiches $
OO0 s5Reviews

125 University Ave, Palo Alto

Breakfast & Brunch, Sandwiches, Burgers

4. Philz Coffee
VB L 889 Reviews $

3191 Middlefield Rd, Palo Alto
Coffee & Tea

Ts=mm=a= 5 House of Bagels

LI 107 Reviews $
1712 Miramonte Ave, Mountain View
Bagels, Breakfast & Brunch, Sandwiches

Java

JavaScript

Security Concerns

Who can access the bridge?

= Everyone

October 9, 2014

THE HUFFINGTON POST

[T [n o Foton

FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST HEALT:
Black Voices - Gay Voices + Sports « Crime - Science « Religion + Celedrity - Green - Style + Horoscopes « Third Metric - OWN - Dr Phil « GPS for the Sou

B WATGH LIVE: Dove's "Legacy’ From Mother to Daughter UP FRIDAY: Top Stores

46 U.S. CRUISE MISSILES
'ONE OR TWO' KEY KHORASAN KILLED

Isolated in Browser

Comments | Shares (56) | Syria

Marriage Equality... In West Virgini:

FALL TV IS HERE

FEATURED BLOG POSTS

Desmond Tutu... Vivek Wadhwa...
Alex Ebert...

P Josh Horwitz

The Racial Double Standard on Gun
Violence

The way we talk about incs
this country — and the sol
future acts of violence — seems to be dramatically
different depending on the race of those involved,
Considor the tragic doath of 25 year-old African
American Kajieme Powell in St. Louis this summer.
it was a textbook example of suicide-by-cop. And
uent nationa

1 =

i '
Seriously, GOP?!
Scott Lawsuit.. Harsh Law Explaine|
8 of gun vioknos n SCOTUS: Our Badl.. GOPer Goes Q
o06 W propose 10 SIOM 6o mants (77) | Gay Marriage

yet very ftte of the s

No origin distinction in WebView calls

f.bar();

UFFINGTON POST

B0 WATCH LA Cove's Lagaey Foum Wetser s Baugies =

46 U.S. CRUISE MISSILES
'ONE OR TWO' KEY KHORASAN KILLED

'A DOZEN' CIVILIANS DEAD

FEATURED BLOG POSTS

Desmond Tutu._.. Vivek Wadhwa...

Java

Seriously, 1. Ri
Scott Lawsuit.. Harsh Law Explained..
- SCOTUS: Our Bad!.. GOPer Goes Quist

Analysis of Public Apps

» How many mobile web apps?
» How many use JavaScript Bridge?

» How many vulnerable?

Experimental Results

737,828 free apps from Google Play (Oct '13)
563,109 apps embed a browser

219,404 use the JavaScript Bridge

107,974 have at least one security violation

Most significant vulnerabilities

1. Loading untrusted web content
2. Leaking URLs to foreign apps

3. Exposing state changing navigation to foreign apps

Loading untrusted web content

“You should restrict the web-pages that
can load inside your WebView with a
whitelist.”

- Facebook

“...only loading content from trusted
sources into WebView will help protect
users.”

- Adrian Ludwig, Google

Forms of navigation

// In app code
myWebView.loadUrl(“foo.com”);

<!-- In HTML -->
clickl

<!l-- More HTML -->
<iframe src=“foo.com”/>

// In JavaScript
window.location = “foo.com”;

Implementing navigation whitelist

public boolean shouldOverrideUrlLoading(
WebView view, String url){

// False -> Load URL in WebView
// True -> Prevent the URL load

public boolean shouldOverrideUrlLoading(
WebView view, String url){

String host = new URL(url).getHost();

if(host.equals(“stanford.edu”))
return false;

log(“Overrode URL: »” + url);

return true;

Reach Untrusted Content?

» 40,084 apps with full URLs and use JavaScript Bridge
» 13,683 apps (34%) can reach untrusted content

Exposing sensitive information in URLs

Android apps communicate using intents
= An implicit intent is delivered to any app whose filter matches

= An intent filter can declare zero or more <data> elements, such as
> mimeType - e.g., android:mimeType="video/mpeg”
> scheme - e.g., android:scheme="http"

When a WebView loads a page, an intent is sent to the app
= Another app can register a filter that might match this intent

= |f the URL contains sensitive information, this information can be
stolen

Example

OAuth protocol for browser-based web authentication
= Used by Google, Facebook, LinkedIn and other identity providers
= |n some configurations, may return a session token as part of a URL

Mobile app developers may try to use OAuth through WebView

= A form of session token is returned as part of a URL

= Delivered through an implicit intent

= May reach any app with filter that specifies protocol scheme my_oauth

Malicious app may steal a session token from a vulnerable app
= Malicious app registers an implicit intent with scheme my_oauth
= Waits for a URL containing the form of session token returned by OAuth.

Handling SSL Errors

onReceivedSslError

1. handler.proceed()
2. handler.cancel()
3. view.loadUrl(...)

Mishandling SSL Errors

117,974 apps implement onReceivedSslError
29,652 apps (25%) must ignore errors

[No Bridge Object
37% === Vulnerable on some devices
I Vulnerable on all devices

Primary results

Vulnerability |% Relevant |% Vulnerable

Unsafe Nav 15 34

HTTP 40 56

Unsafe HTTPS 27 29

1.4

iy
N

i
)

Normalized Vulnerability Rate

0.0

Popularity

|3 10-100

Download Count (thousands)
2 <1 = 100-1,000
/3 1-10 B >1,000

=
=}
T

o
©
T

o
o
T

o
IS
T

Unsafe Nav Unsafe HTTPS

Outdated Apps

I
>
T

o
S

Normalized Vulnerability Rate

o
N

=
N
T

g
o
7

o
©
:

o
o
:

[Outdated Apps
[Updated Apps

Unsafe Nav Unsafe HTTPS

Libraries

29% 51% 53%

unsafe nav HTTP unsafe HTTPS

Additional security issues

Based on 998,286 free web apps from June 2014

Mobile Web App Feature | % Apps

JavaScript Enabled 97

JavaScript Bridge 36

shouldOverrideUrlLoading 94

shouldInterceptRequest 47

onRecervedSslError 21

postUrl 2

Custom URL Patterns 10
Vuln % Relevant | % Vulnerable
Unsafe Navigation 15 34
Unsafe Retrieval 40 56
Unsate SSL 27 29
Exposed POST 2 7
Leaky URL 10 16

Summary

Mobile web apps
= Use WebView Java objects, implemented based on WebKit browser
= “JavaScript bridge” lets web content use Java objects exported by app

Security problems

= WebView does not isolate bridge access by frame or origin

= App environment may leak sensitive web information in URLs
= WebView does not provide security indicators

= Many browser security mechanism are not automatically provided by
WebView

ANDROID PLATFORM

Target fragmentation

>

>

Summary

Android apps can run using outdated OS behavior
- The large majority of Android apps do this
- Including popular and well maintained apps

Outdated security code invisibly permeates the app ecosystem
- “Patched” security vulnerabilities still exist in the wild
- “Risky by default” behavior is widespread

“If the device is running Android 6.0 or higher... [the app] must
request each dangerous permission that it needs while the app is
running.

- Android Developer Reference

“If the device is running Android 6.0 or higher and your app's
target SDK is 6.0 or higher [the app] must request each
dangerous permission that it needs while the app is running.

- Android Developer Reference

Negligent

Outdatedness
Outdatedness
Android Android App Android App
5.0 5.1 Update 6.0 Collecte

Released Released d Released d

100

—— Negligent Outdatedness
—— Outdatedness

% Apps

0 500 1000 1500 2000 2500
Outdatedness (Days)

Fragment Injection

Vulnerable App

Malicious Intent
PreferenceActivity

Extra.SHOW_FRAGMENT “Attacked

Fragment”

Extra.SHOW_FRAG_ARG - ————— -—---9 Attacked

Fragment

Other
Data b o e = e = == —— b -
Extras T

securityintelligence.com/new-vulnerability-android-framework-fragment-injection/

Fragment Injection

» Fixed in Android 4.4
» Developers implement isValidFragment to authorize fragments

// Put this in your app
protected boolean isValidFragment (String fName) {
return MyFrag.class.getName () .equals (fName) ;

}

Fragment Injection

Vulnerable if:
- Targets 4.3 or lower (31%)
- Some class inherits from PreferenceActivity (4.8%)
- That class is exported (1.1%)
- That class does not override isValidFragment (0.55%)

4.2% of apps vulnerable if no fix was ever implemented

Mixed Content in WebView

» Major web browsers block Mixed Content
» In Android 5.0, WebViews block Mixed Content by default
» Can override default with setMixedContentMode()

SOP for file:// URLs in WebView

> Android 4.1 separate file:// URLs are treated as unique origins
» Can override with setAllowFileAccessFromFileURLs()

>

>

Summary

Android apps can run using outdated OS behavior
- The large majority of Android apps do this
- Including popular and well maintained apps

Outdated security code invisibly permeates the app ecosystem
- “Patched” security vulnerabilities still exist in the wild
- “Risky by default” behavior is widespread

Two lectures on mobile security

Introduction: platforms and trends —
Threat categories

= Physical, platform malware, malicious apps

Defense against physical theft

Malware threats

System architecture and defenses

= Apple iOS security features and app security model |
= Android security features and app security model
Security app development

= WebView — secure app and web interface dev

> Thurs

~— Tues

= Device fragmentation —

Comparison: iOS vs Android

App approval process

" Android apps from open app store

= jOS vendor-controlled store of vetted apps
Application permissions

= Android permission based on install-time manifest
= AlliOS apps have same set of “sandbox” privileges
App programming language

= Android apps written in Java; no buffer overflow...
= jOS apps written in Objective-C

Comparison

__________ios __|Android _|Windows |
X

Unix X

Windows

Open market X
Closed market X

Vendor signed X
Self-signed X
User approval of permissions X
Managed code X

Native code X

Comparison

__________ios __|Android _|Windows |
X

Unix X

Windows X
Open market X

Closed market X X
Vendor signed X

Self-signed X X
User approval of permissions X 7->8
Managed code X X

Native code X

Two lectures on mobile security

Introduction: platforms and trends —
Threat categories

= Physical, platform malware, malicious apps

Defense against physical theft

Malware threats

System architecture and defenses

= Apple iOS security features and app security model |
= Android security features and app security model
Security app development

= WebView — secure app and web interface dev

> Thurs

~— Tues

= Device fragmentation —

