
Mobile Device and Platform 
Security 

John Mitchell

CS 155 Spring 2018



2

Two lectures on mobile security
Introduction: platforms and trends
Threat categories
n Physical, platform malware, malicious apps

Defense against physical theft
Malware threats
System architecture and defenses
n Apple iOS security features and app security model
n Android security features and app security model 

Security app development
n WebView – secure app and web interface dev
n Device fragmentation

Thurs

Tues



3

MOBILE COMPUTING



4

Current devices have long history

Apple Newton, 1987

Palm Pilot, 1997

iPhone, 2007



5

Mobile devices

Mainframe -> desktop/server -> mobile/cloud
Trends
n Increasing reliance on personal device

w Communication, personal data, banking, work
w Data security, authentication increasingly important

n From enterprise perspective: BYOD
w Mobile device management (MDM) to protect enterprise

n Reliance on cloud: iCloud attack risks, etc
n Progress from web use to mobile device UI

w Apps provide custom interface, but limited screen size…

System designs draw on best ideas of past



6

Global smartphone market share
Before 2014



7

Global smartphone market share
Since 2014



8

US Mobile App Traffic

http://www.ironpaper.com/webintel/articles/web-design-statistics-2015/



9

Digital media usage time

http://www.ironpaper.com/webintel/articles/web-design-statistics-2017/



10

Zillions of  apps



11

App Marketplace 

Better protection, isolation than laptop install
App review before distribution
n iOS: Apple manual and automated vetting
n Android 

w Easier to get app placed on market
w Transparent automated scanning, removal via Bouncer

App isolation and protection
n Sandboxing and restricted permission
n Android

w Permission model
w Defense against circumvention



12

MOBILE THREATS



13

What’s on your phone?

Contact list?
Email, messaging, social networking?
Banking, financial apps?
Pictures, video, …?
Music, movies, shows?
Location information and history 
Access to cloud data and services?

What would happen if someone picked up 
your unlocked phone?



14

Mobile platform threat models

Attacker with physical access
n Try to unlock phone
n Exploit vulnerabilities to circumvent locking

System attacks
n Exploit vulnerabilities in mobile platform via drive-

by web downloads, malformed data, etc.
App attacks
n Use malicious app to steal data, misuse system, 

hijack other apps



16

PROTECTION AGAINST 
PHYSICAL ATTACKER



17

PROTECTION AGAINST 
PHYSICAL ATTACKER

Device locking and unlocking



18

Today:   PINs or Patterns
Need PIN or pattern to unlock device
n Once unlocked all apps are accessible

Twist: set a PIN or pattern per app  (per photo, video)
n Protect settings,  market,  Gmail even if phone unlocked.
n Examples:    App Protector Pro,  Seal,  Smart lock, …

Another twist:   
n Front camera takes picture when wrong PIN entered
n Example:    GotYa



19

Background: brute force pwd attack

Offline attack
n Traditionally: steal pwd file, try all pwd
n Unix pwd file has hashed passwords
n Cannot reverse hash, but can try dictionary

hash(pwd, salt) = pwd_file_entry

Online attack
n Can you try all passwords at a web site?
n What does this mean for phone pin attacks?

dictionary



20

Attacks
Smudge attacks  [Aviv et al., 2010]
n Entering pattern leaves smudge that

can be detected with proper lighting
n Smudge survives incidental contact with clothing

Potential defense  [Moxie 2011]
n After entering pattern, require user to swipe across

Another problem:   entropy
n People choose simple patterns – few strokes
n At most 1600 patterns with <5 strokes

1

2
3
4
5



22

iOS 4.0:    PIN brute force attack

After device is jail broken, can PIN be extracted?
n [Needed to read encrypted data partition (later topic)]

iOS key management (abstract): 

Testing 10,000 PINs
n for each, derive and test  class key  ≈ 20 mins on iPhone 4

[Bedrune, Sigwald, 2011]

HW UID key
(AES key unique to device,

cannot extract)

|         4 digit PIN |   decrypt
stored 
key

class key
(decrypts keychain)

(code.google.com/p/iphone-dataprotection)



23

Better Device Unlocking

A more secure approach to unlocking:
n Unlock phone using a security token on body

wrist watch,   glasses,   clothing

Requirements
n Cheap token, should not require charging



24

Summary: locking and unlocking

Protect from thief via user authentication
n Commonly: pin, swipe, etc.
n Future: Biometric?   Token on body?
n Can phone destroy itself if too many tries?

Physical access can allow
n Thief to jailbreak and crack password/pin
n Subject phone to other attacks

Next defense: erase phone when stolen



25

PROTECTION AGAINST 
PHYSICAL ATTACKER
Mobile device management (MDM)



26

MDM:Mobile Device Management

Manage mobile devices across organization
n Consists of central server and client-side software

Functions:
n Diagnostics, repair, and update
n Backup/restore
n Policy enforcement (e.g. only allowed apps)
n Remote lock and wipe
n GPS tracking



27

MDM Sample Deployment

MDM 
enterprise

serverpolicy file

user’s phone
enrollment

push notification to request check in

HTTPS connection to
report status and

receive instructions

configure,  query,  lock,  wipe, …  

server cert

User consent



28

Summary: mobile device mgmt

Protect stolen phone from thief 
n GPS: where’s my phone?
n Device wipe

Preventing brute force attacks
n Phone can “lock” if too many bad pin tries
n Use MDM to reset to allow user pin

Backup, backup, backup!
n Frequent backup makes auto-wipe possible



29

MALWARE ATTACKS



30

Mobile malware examples

DroidDream (Android)
n Over 58 apps uploaded to Google app market
n Conducts data theft; send credentials to attackers

Ikee (iOS)
n Worm capabilities (targeted default ssh pwd)
n Worked only on jailbroken phones with ssh installed 

Zitmo (Symbian,BlackBerry,Windows,Android)
n Propagates via SMS; claims to install a “security certificate”
n Captures info from SMS; aimed at defeating 2-factor auth
n Works with Zeus botnet; timed with user PC infection



31

Android malware 2015



32

Increasing Android app malware

https://blog.gdatasoftware.com/2017/04/29712-8-400-new-android-malware-samples-every-day



33

Recent Android Malware
Description

AccuTrack
This application turns an Android smartphone into a GPS tracker.
Ackposts
This Trojan steals contact information from the compromised device and uploads 
them to a remote server.
Acnetdoor
This Trojan opens a backdoor on the infected device and sends the IP address to a 
remote server.
Adsms
This is a Trojan which is allowed to send SMS messages. The distribution channel ...  
is through a SMS message containing the download link.
Airpush/StopSMS
Airpush is a very aggresive Ad-Network.
…

BankBot
This malware tries to steal users’ confidential information and money from bank and 
mobile accounts associated with infected devices.

http://forensics.spreitzenbarth.de/android-malware/

http://forensics.spreitzenbarth.de/android-malware/


34

Brief history of iOS attacks

Find and call (2012)

n Accesses user’s contacts and spams friends

Jekyll-and-Hyde (2013):  

n Benign app that turns malicious after it passes Apple’s review

n App can post tweets, take photos, send email and SMS, etc.

Xsser mRat (2014)

n Steal information from jailbroken iOS devices

WireLurker (2014)

n Infects iOS through USB to OSX machines

Xagent (2015)

n Spyware.   Steals texts, contacts, pictures, …

AceDeceiver (2016)

n Infects by exploiting vulnerability in Fairplay (DRM)



35

W



36



37

Based on FairPlay vulnerability

Requires malware on user PC, install of malicious app in App Store
Continues to work after app removed from store 
Silently installs app on phone 



38

IOS PLATFORM



39

Apple iOS

From: iOS App Programming Guide



40

Reference

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

https://www.apple.com/business/docs/iOS_Security_Guide.pdf


41

Topics

System Security
Encryption and Data Protection 
App Security 
Network Security 
Apple Pay 
Internet Services 
Device Controls
Privacy Controls
Apple Security Bounty

1 User-level security features

2
Protecting  mobile platform

3 App isolation and protection



42

IOS DEVICE AND PRIVACY 
CONTROLS



43

Device 
unlock

Passcode key:  
derived by hashing
passcode and device ID

Hashing uses secret UID on secure enclave
⇒ deriving passcode key requires the secure enclave
Secure enclave enforces  80ms  delay per evaluation:
n 5.5 years to try all 6 digits pins
n 5 failed attempts ⇒ 1min delay,    9 failed attempts ⇒ 1 hour delay
n >10 failed attempts ⇒ erase phone.    Counter on secure enclave.

Can attacker try all 
6-digit passcodes?



44

Unlocking with Touch ID

Passcode can always be used instead
n Passcode required after: Reboot,  or

five unsuccessful Touch ID attempts, …

Other uses  (beyond unlock):
n Enable access to keychain items
n Apple Pay
n Can be used by applications



45

How does it work?
Touch ID:   sends fingerprint image to secure enclave (encrypted)
n Enclave stores skeleton encrypted with secure enclave key

With Touch ID off,  upon lock,  class-key Complete is deleted
⇒ no data access when device is locked

With Touch ID on:  class-key is stored encrypted by secure enclave
Decrypted when authorized fingerprint is recognized
Deleted upon reboot, 48 hours of inactivity, or five failed attempts



46

How secure is it?

Easy to build a fake finger
n Several demos on YouTube
n About 20 mins of work
n If you have a fingerprint

The problem: fingerprints are not secret
n No way to reset once stolen

Convenient, but more secure solutions exist:
n Unlock phone via bluetooth using a wearable device 
⇒ phone locks as soon as device is out of range

n Enable support for both a passcode and a fingerprint



47

iOS Privacy Controls

User can select which apps access location, 
microphone, a few other services



48

IOS SYSTEM AND DATA 
SECURITY



49

Apple iOS Security
Device security
n Prevent unauthorized use of device

Data security
n Protect data at rest; device may be 

lost or stolen
Network security
n Networking protocols and encryption 

of data in transmission 
App security
n Secure platform foundation

https://www.apple.com/business/docs/iOS_Security_Guide.pdf



50

Secure boot chain

Every layer ensures that the next layer is 

properly signed

Root of trust: boot ROM, installed during 

fabrication

Boot 

ROM

Apple Root

public-key

not updateable

Low level

boot-

loader

(LLB)

signature

iBoot

signature

iOS 

Kernel

signature

verify

signature

run if valid

verify

sig.

verify

sig.



51

Secure boot chain
Ensures only authorized iOS code can boot

Jailbreaking works by exploiting bugs in the chain
n Disables verification down the line

Note:  bugs in the boot ROM are especially damaging
n Boot ROM cannot be updated 



52

Software update

All iOS software updates are signed by Apple
n Signature from Apple’s software update server covers:  

hash of update code,   
device unique ID (ECID)   and   nonce from device

⇒ Apple keeps track of which devices (ECID) updated to what

Why sign nonce and device ID?    (harder for Apple to distribute patch)
n Cannot copy update across devices ⇒ Apple can track updates
n Nonce ensures device always gets latest version of update



53

Jailbreak detection
Jailbreaking:  install apps outside 3rd party sandbox 
n Apps in /Applications  (not in sandboxed  “mobile” dir)

Jailbreak prevention
n App wants to detect if device is jailbroken and not run if so, 

e.g., banking apps 
Some methods:
_dyld_get_image_name():   check names of loaded dynamic libs
_dyld_get_image_header():   inspect location in memory

Can be easily bypassed – jailbreak detection is brittle
n e.g.,  using Xcon tool    (part of Cydia)



54

App exploit mitigation: XN and ASLR

XN bit  (eXecute Never):      [a.k.a NX bit]
n Mark stack and heap memory pages as non-

execute,  enforced by CPU

ASLR  (address space layout randomization):
n At app startup: randomize location of executable,  

heap,  stack
n At boot time: randomize location of shared libs

Harder to exploit memory corruption vulns



55

Data protection:  protecting application data

Application files written to Flash are encrypted:
• Per-file key:   encrypts all file contents   (AES-XTS)

• Class key:   encrypts  per-file key   (ciphertext stored in 
metadata)

• File-system key:   encrypts file metadata

Resetting device deletes 
file-system key

All key enc/dec takes place 
inside the secure enclave
⇒ key never visible to apps



56

Secure enclave   (Apple A7 and later)

Coprocessor fabricated in the Apple A7, A8, …
All writes to memory and disk are encrypted 
with a random key generated in the enclave
Used for device unlock, ApplePay, … (more on this 
later)

application processor Secure enclave

HW-
RNGshared

memory

UID

iOS

ap
p

ap
p

ap
p

ap
p

keys

A9



57

Backup to iCloud

Data backup
n Encrypted data sent from device to iCloud
n But not applied to data of class NoProtection
n Class keys backed up protected by “iCloud keys”  

(for device migration)
Keychain class keys:
n Non-migratory class keys

wrapped with a UID-derived key 
⇒ Can only be restored on current device

n App-created items: not synced to iCloud by default 
[dict secObject:kCFBooleanTrue forKey:kSecAttrSynchronizable];



58

IOS APP DEVELOPMENT 
AND SECURITY



59

iOS Application Development

Apps developed in Objective-C using Apple SDK
Event-handling model based on touch events
Foundation and UIKit frameworks provide key services used by apps



60

iOS Platform

Cocoa Touch 
Foundation framework

n OO support for collections, file mgmt, network; UIKit

Media layer
n 2D and 3D drawing, audio, video

Core OS and Core Services: 
n APIs for files, network, SQLite, POSIX threads, UNIX sockets

Kernel: based on Mach kernel like Mac OS X

Implemented in C and Objective-C



61

App Security

Runtime protection
n System resources, kernel shielded from user apps
n App “sandbox” prevents access to other app’s data 
n Inter-app communication only through iOS APIs 
n Code generation prevented

Mandatory code signing
n All apps must be signed using Apple-issued certificate

Application data protection
n Apps can leverage built-in hardware encryption



62

Limit app’s access to files, 
preferences, network, other 
resources
Each app has own sandbox directory
Limits consequences of attacks
Same privileges for each app

iOS Sandbox 



63

Runtime process security

All 3rd party apps are sandboxed:
n run as the non-privileged user “mobile” 
n access limited by underlying OS access control

Each app has a unique home directory for its 
files, randomly assigned when the app is 
installed
Accessing other info only through mediated 
services provided by iOS 



65

App code signing

All executable code must be signed by Apple 
certificate, including
n Native apps
n 3rd party apps (signed after Apple review)
n Dynamic libraries

w App can link against any dynamic library with the same 
TeamID (10-char string)

w Example:   an ad network library

Not perfect:   Charlie Miller’s  InstaStock app
n stock ticker program:   passed Apple review
n After launch: downloads “data” from remote site,  stores it 

in non-XN region,   executes it   ⇒ app becomes malicious
n Why is there a non-XN region?     Needed for Safari JIT.



66

“Masque Attack”
iOS app installed using enterprise/ad-
hoc provisioning could replace genuine 
app installed through the App Store, if 
both apps have same bundle identifier
This vulnerability existed because iOS 
didn't enforce matching certificates for 
apps with the same bundle identifier

Several attacks occurred in 2015



67

Two lectures on mobile security
Introduction: platforms and trends
Threat categories
n Physical, platform malware, malicious apps

Defense against physical theft
Malware threats
System architecture anddefenses
n Apple iOS security features and app security model
n Android security features and app security model 

Security app development
n WebView – secure app and web interface dev
n Device fragmentation

Thurs

Tues


