
CSCI-UA.9480
Introduction to Computer Security

Session 3.1
Understanding and Preventing 
Vulnerabilities
Prof. Nadim Kobeissi



What does it mean for software to be secure?

Let’s consider a social network app.

● Pictures posted by a user can only be seen 

by that user’s friends (confidentiality)

● A user can like any given post at most once 

(integrity)

● The service is operational more than 99.9% 

of the time on average (availability)

Sound familiar? Same words, but meaning is 

context dependent (cryptography vs. 

application security.)

2CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



What is a security failure?

The system can be coerced into a state in 

which it does not achieve its security goals.

● Can be due to a software programming 

error.

● May be due to a design error in the protocol 

specification.

● No error in the software at all, but rather 

user error.

3CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Common Vulnerabilities and Exposures.

U.S. national repository of software 

vulnerabilities.

● Most bugs eventually obtain their own 

“CVE.”

● Operating systems bugs, web application 

bugs, etc.

4CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Diving into a CVE: CVE-2014-3205.

All Seagate BlackArmor NAS contain a 

hardcoded-password.

● Anyone could log in using the password 

“!~@##$$%FREDESWWSED”

● Followed by another separate CVE, CVE-

2014-3206 which allowed anyone to 

execute arbitrary code by sending a HTTP 

request to a PHP file.

5CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3206


Bugs are everywhere.

So I built my own NAS.

● …which runs OpenSUSE.

● CVE-2011-3172: Log into any disabled user 

account in SUSE Linux.

● You can’t ever avoid bugs in the long run, 

only minimize your attack surface.

6CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3172


Heartbleed: another notable bug.

7CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Leaked 2018 CVE list.

8CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Categories of 
Vulnerabilities

9CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

3.1a



Memory Management Vulnerabilities.

● Most modern programming language have 

“memory management.” Some expect the 

user to manage memory allocations 

manually and later de-allocate.

● Buffer overflows: an out-of-bounds memory 

index allows operations on unintended 

memory addresses.

● Dangling pointers: a program re-accesses 

memory that was since deallocated.

10CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Test your knowledge!

11CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Which of the following languages implements 

garbage collection and memory management?

☐ A: Go.

☐ B: C.

☐ C: C++.



Test your knowledge!

12CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Which of the following languages implements 

garbage collection and memory management?

🗹 A: Go.

☐ B: C.

☐ C: C++.



Structured Output Generation Vulnerabilities.

● Output generated by one component relies 

on dynamic variables, but must remain in a 

safe structure when processed by the 

receiving component.

● SQL injections are the most popular 

example.

● Can apply to command-line shells, to web 

scripts…

13CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Test your knowledge!

14CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can this query be exploited in order to 

perform an SQL injection attack?

query = "select * from users 
where name=’"+ name +"’" and 
pw = ’"+ password +"’"



Test your knowledge!

15CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can this query be exploited in order to 

perform an SQL injection attack?

query = "select * from users 
where name=’"+ name +"’" and 
pw = ’"+ password +"’"



Race Condition Vulnerabilities.

● On a file system: an attacker can squeeze an 

operation between the time permissions on 

a file are checked and an action is 

undertaken.

Seen often in programming languages focusing 

on concurrency (Go, or perhaps even JavaScript 

with Web Workers.)

16CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



API Vulnerabilities.

● Missing access control on critical API 

functionality.

● Denial of service by using the API against 

itself.

17CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Side-channel Vulnerabilities.

We saw these when discussing cryptography.

● Power analysis can leak entire private keys.

● Timing analysis can also leak entire private 

keys.

● Rowhammer: maliciously crafter memory 

access patterns triggers reactions in high-

density RAM memory cells that causes 

memory bits to flip.

18CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Prevention of 
Vulnerabilities

19CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

3.1b



Language safety.

Perfectly well-described software means 

bug-free software.

● Most bugs are software not doing what we 

intended for it to do and computers taking 

us too literally.

● Garbage collection, memory management.

● Static type systems, bound checks.

● Namespace localization.

20CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Better programming practices.

Almost completely language dependent.

● Remember to manage your pointers in C.

● Don’t use eval() in JavaScript.

● Don’t use system() in C.

There’s an infinite number of these rules and 

they come largely with experience.

21CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Typing and verifiably parsing structures.

● Language Integrated Query (LINQ.)

● Regular expression types.

● Verified parsing and serializing.

22CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Avoiding race conditions.

One relatively new method: ownership 

regimes.

● Multiple pointers to the same resource can 

be created only in certain circumstances.

● Rust is the first mainstream programming 

language to incorporate this.

23CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Safe API design.

It all comes down to design.

● Libsodium’s entire existence is about 

offering a cryptography API where it’s 

“harder to shoot yourself in the foot.”

● For web APIs, compartmentalization, 

defensive programming play a large role.

● Implementing pre-condition and post-

condition checks on APIs.

24CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Detection of 
Vulnerabilities

25CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

3.1c



Static detection.

● Code analysis (automated or manual).

● Symbolic verification by building an 

Abstract Syntax Tree.

● Flow evaluation.

26CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Dynamic detection and fuzzing.

● Monitoring programs and using statistic 

analysis.

● Black-box fuzzing: a barrage of arbitrary 

values over an unknown internal program 

structure to “see what happens.”

● White-box fuzzing: internal program 

structure is known, allowing optimizations 

to improve coverage.

27CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Formal verification.

● For protocols, symbolic or computational 

verification (ProVerif, CryptoVerif, etc.) 

allow us to write up models that describe 

protocols and obtain automated proofs.

● My PhD involved translating web protocol 

code to formal models in ProVerif.

● F*: a new language for writing formally 

verified software. Dependent types, 

refinements, post-condition logic, etc. (ties 

ML to the Z3 SMT theorem prover.)

28CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Microsoft Research is using F* in order to build 
the aptly-named Project Everest, a fully 
formally verified HTTPS stack.

29CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Did you know?



Next time:
Control Flow 

Hijacking

30CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

3.2


