
Noise Explorer
Fully automated modeling, analysis and verification

for arbitrary Noise protocols

Nadim Kobeissi
Karthikeyan Bhargavan

IACR Real World Crypto
Symposium 2019
San Jose, California

Noise Protocol Framework: What is it?

Example Noise Handshake Pattern

NK:

<- s

...

-> e, es

<- e, ee

A Framework for Secure Channel
Protocols

• Based on Diffie-Hellman key
agreement.

• Simple language for describing
messages.

• From message description, complex
state transformations are derived.

• Author: Trevor Perrin.

2

Trevor Perrin’s Talk at RWC2018

3

https://youtu.be/3gipxdJ22iM

https://youtu.be/3gipxdJ22iM

Understanding the Notation

Example Noise Handshake Pattern

IK:

<- s

...

-> e, es, s, ss

<- e, ee, se

Handshake Pattern Notation

• s, e: local static and ephemeral key
pairs. Automatically generated when
they appear in a message.

• ss, se, es, ee: Diffie-Hellman
operations. Automatically mixed into
state.

• Once we have shared secret
agreement, encryption on certain
payload elements kicks in
automatically.

4

Handshake State Machine

Example Noise Handshake Pattern

XX:

-> e

<- e, ee, s, es

-> s, se

State Transformation Functions

• Defined cryptographic operations:
EncryptAndHash, HKDF, etc.

• Defined local state objects:
CipherState, SymmetricState,
HandshakeState.

• Defined state transformations when
processing tokens in messages:
MixHash, MixKey, etc.

5

Popular Adaptations of Noise

WireGuard

IKpsk2:

<- s

...

-> e, es, s, ss

<- e, ee, se, psk

WhatsApp
XX:

-> e

<- e, ee, s, es

-> s, se

IK:

<- s

...

-> e, es, s, ss

<- e, ee, se

6

Security Goals in the Noise Specification

Example Noise Handshake Pattern

KN:

-> s

...

-> e 0 0

<- e, ee, se 0 3

-> 2 1

<- 0 5

Grade Based System

• Authentication: three grades:
• 0, 1, 2

• Confidentiality: six grades:
• 0, 1, 2, 3, 4, 5

• Identity hiding:
• Not currently evaluated by Noise Explorer.

7

Security Goals in the Noise Specification

Example Noise Handshake Pattern

KN:

-> s

...

-> e 0 0

<- e, ee, se 0 3

-> 2 1

<- 0 5

Authentication Grades
• Authentication 0: No authentication.

• “This payload may have been sent by any
party, including an active attacker.”

• Authentication 1: Sender
authentication vulnerable to KCI.
• “If the recipient's long-term private key has

been compromised, this authentication can be
forged.”

• Authentication 2: Sender
authentication resistant to KCI.
• “Assuming the corresponding private keys are

secure, this authentication cannot be forged.”

8

Security Goals in the Noise Specification

Example Noise Handshake Pattern

KN:

-> s

...

-> e 0 0

<- e, ee, se 0 3

-> 2 1

<- 0 5

Confidentiality Grades

• Confidentiality 0: No confidentiality.
• “This payload is sent in cleartext.”

• Confidentiality 1: Encryption to ephemeral
recipient.

• “This payload has forward secrecy, since encryption
involves an ephemeral-ephemeral DH ("ee"). However,
the sender has not authenticated the recipient, so this
payload might be sent to any party, including an active
attacker.”

• Confidentiality 2: Forward secrecy for sender
compromise only, vulnerable to replay.

• “If the recipient's static private key is compromised,
even at a later date, this payload can be decrypted. This
message can also be replayed, since there's no
ephemeral contribution from the recipient.”

9

Security Goals in the Noise Specification

Example Noise Handshake Pattern

KN:

-> s

...

-> e 0 0

<- e, ee, se 0 3

-> 2 1

<- 0 5

Confidentiality Grades
• Confidentiality 3: Weak forward secrecy.

• “The recipient's alleged ephemeral public key may have
been forged by an active attacker. In this case, the
attacker could later compromise the recipient's static
private key to decrypt the payload.”

• Confidentiality 4: Weak forward secrecy if
sender’s private key was compromised.

• “If the sender's static private key was previously
compromised, the recipient's alleged ephemeral public
key may have been forged by an active attacker. In this
case, the attacker could later compromise the intended
recipient's static private key to decrypt the payload.”

• Confidentiality 5: Strong forward secrecy.
• “Assuming the ephemeral private keys are secure, and

the recipient is not being actively impersonated by an
attacker that has stolen its static private key, this
payload cannot be decrypted.”

10

So Many Security Goals!

Noise Allows for Use-Case Specific
Protocols

• TLS isn’t (and shouldn’t be) the answer
to everything.

• How can we ascertain which security
promises any Noise Handshake
Pattern can give?

50+ Handshake Patterns in the
Spec Alone

• How do we verify all of these protocols
against (50+ · 10) = 500+ security
queries?

11

Noise Explorer: Design and Formally
Verify Noise Handshake Pattern

• Noise Explorer Compendium: Formal
verification results for 50+ Noise
Handshake Patterns.

• NEW: Generate Implementations:
Generates full implementations of your
Noise Handshake Pattern in JS and Go.

• Design Noise Protocols: Immediate to-
spec validity checks, helpful
visualizations.

• Generate Models for Formal
Verification: Symbolic models for
ProVerif.
• Top-level processes.

• Sophisticated queries for all security goals.

• Compromised principal (Charlie).

12

any

What is Formal Verification with ProVerif?

…with ProVerif.

• Developed at INRIA Paris by Bruno
Blanchet and team.

• Check it out:
http://prosecco.gforge.inria.fr/personal
/bblanche/proverif/

• I defended my Ph.D. thesis last month,
which has many, many, many uses of
ProVerif: https://hal.inria.fr/tel-
01950884

Automated formal verification…

• Beating the “code first, specify later” (if
ever) methodology.

• Two main models: Symbolic model
and computational model.

• We use the symbolic model, where we
can model protocol flows and try to
find contradictions to security queries.

13

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://hal.inria.fr/tel-01950884

Generating Applied Pi Models for ProVerif

Diffie-Hellman in ProVerif

fun dhexp(key, key):key.

equation forall a:key, b:key;

dhexp(b, dhexp(a, g)) =
dhexp(a, dhexp(b, g)).

Components to Model

• In ProVerif, all cryptographic primitives
are perfect symbolic black-boxes with
no algebraic properties.

14

Generating Applied Pi Models for ProVerif

AEAD in ProVerif

fun encrypt(key, nonce, bitstring,
bitstring):bitstring.

fun decrypt(key, nonce, bitstring,
bitstring):aead reduc

forall k:key, n:nonce, ad:bitstring,
plaintext:bitstring;

decrypt(k, n, ad, encrypt(k, n, ad,
plaintext)) = aeadpack(true, ad,
plaintext).

Components to Model

• In ProVerif, all cryptographic primitives
are perfect symbolic black-boxes with
no algebraic properties.

• Encryption is a PRP, hashing is a PRF,
etc.

15

Generating Applied Pi Models for ProVerif

State Management in ProVerif

letfun mixKeyAndHash(ss:symmetricstate,
input_key_material:key) =

let (cs:cipherstate, ck:key,
h:bitstring) = symmetricstateunpack(ss) in

let (ck:key, temp_h:key,
temp_k:key) = hkdf(ck, input_key_material)
in

let (cs:cipherstate, temp_ck:key,
h:bitstring) =
symmetricstateunpack(mixHash(symmetricstat
epack(cs, ck, h), key2bit(temp_h))) in

symmetricstatepack(initializeKey(t
emp_k), ck, h).

Components to Model

• In ProVerif, all cryptographic primitives
are perfect symbolic black-boxes with
no algebraic properties.

• Encryption is a PRP, hashing is a PRF,
etc.

• Common state management library for
all generated models.

16

Our Findings

• Analysis of 50+ Noise Handshake Patterns.

• We contribute a formally verified set of groundings for all
security goals.

• We show that if pattern validity rules are not followed,
subtle attacks can be found.

17

Contributions
to Noise

Specification

Improvements to Revision 34:

• More well-defined pattern validity rules and security
grades.

• Higher assurance for fundamental pattern security grades.

• New security grades for all 23 deferred patterns.
18

Noise Versus TLS: Lines of Code

19

0

50000

100000

150000

200000

250000

300000

BORINGSSL BEARSSL NOISEEXP: IK

Lines of Code

Time for a Demonstration!

20

Aspects that will be demonstrated:
1. Pattern designer and validator: https://noiseexplorer.com/
2. Automatically generated formal verification results:

https://noiseexplorer.com/patterns/IK/ (as an example)
3. Detailed analysis results: https://noiseexplorer.com/patterns/IK/A.html (as an example)

https://noiseexplorer.com/
https://noiseexplorer.com/patterns/IK/
https://noiseexplorer.com/patterns/IK/A.html

The Future of Noise

21

Upcoming Work in Noise

• Signatures.

• Stateful hashing and symmetric
crypto overhaul.

• NoiseSocket, NLS.

• Implementations that generate
implementations?

Small, Use-Case Specific Protocols

• Entire library is ~1,000 LoC, specific
Handshake Patterns can be smaller.
(Great post by David Wong:
https://cryptologie.net/article/446/qui
c-crypto-and-simple-state-machines/)

• Much smaller and more use-case
specific state machine than TLS or
similar.

https://cryptologie.net/article/446/quic-crypto-and-simple-state-machines/

Conclusion

22

Noise Explorer’s potential: the ultimate online compendium for reasoning
about, designing, studying, implementing and verifying Noise Handshake
Patterns.

Special thanks: Bruno Blanchet, Trevor Perrin.

Related work: Benjamin Lipp, WireGuard verification in CryptoVerif.

Noise Explorer: https://noiseexplorer.com

Paper: https://eprint.iacr.org/2018/766

https://noiseexplorer.com/
https://eprint.iacr.org/2018/766

