CSCI-UA.9480
Introduction to Computer Security

Session 2.3
Designing Secure Network

Systems

Prof. Nadim Kobeissi

Goals of today’s class.

A look into some secure network systems:
e WireGuard: a modern VPN.

e Acritical look at ProtonMail, a secure email

service.

WIREGUARD

. . . FAST, MODERN, SECURE VPN TUNNEL
WireGuard is an example of a well-designed

secure network application.

O °
ProtonMail is an example of a badly designed] P rOto n Ma I |-

network application.

WireGuard

Following slides are by Jason A.
Donenfeld, author of WireGuard.

What is WireGuard?

= Layer 3 secure network tunnel for IPv4 and IPv6.
= Opinionated. Only layer 3!

Designed for the Linux kernel

= Slower cross platform implementations also.
= UDP-based. Punches through firewalls.
= Modern conservative cryptographic principles.
= Emphasis on simplicity and auditability.

= Authentication model similar to SSH’s
authenticated_keys.

= Replacement for OpenVPN and IPsec.

= Grew out of a stealth rootkit project.

= Techniques desired for stealth are equally as useful for tunnel
defensive measures.

) WIREGUARD

Security Design Principle 1: Easily Auditable

OpenVPN Linux XFRM StrongSwan SoftEther WireGuard
116,730 LoC 119,363 LoC 405,894 LoC 329,853 LoC 3,771LoC

Plus OpenSSL! Plus StrongSwan! Plus XFRM!

Less IS more.

) WIREGUARD

Security Design Principle 1: Easily Auditable

IPsec

(XFRM+StrongSwan)
419,792 LoC

SoftEther

329,853 LoC

WireGuard
3,771 LoC

OpenVPN /
119,363
LoC

) WIREGUARD

Security Design Principle 2: Simplicity of Interface
= WireGuard presents a normal network interface:

ip link add wgd type wireguard

ip address add 192.168.3.2/24 dev wg0
ip route add default via wgo

ifconfig wg0 ..

iptables -A INPUT -1 wg0 ..

H o H H

/etc/hosts.{allow,deny}, bind(), ..

= Everything that ordinarily builds on top of network interfaces - like eth® orwlan0 -
can build on top of wg0.

) WIREGUARD

Blasphemy!

= WireGuard is blasphemous!

= We break several layering assumptions of 90s networking technologies like
IPsec (opinioned).

= |Psecinvolves a “transform table” for outgoing packets, which is managed by a user space
daemon, which does key exchange and updates the transform table.

= With WireGuard, we start from a very basic building block - the network
interface — and build up from there.

= Lacks the academically pristine layering, but through clever organization we
arrive at something more coherent.

) WIREGUARD

Cryptokey Routing

= The fundamental concept of any VPN is an association between public keys of peers
and the IP addresses that those peers are allowed to use.

= A WireGuard interface has:
= A private key
= Alistening UDP port

= Alist of peers

= Apeer:
= |sidentified by its public key
= Has a list of associated tunnel IPs

= Optionally has an endpoint IP and port

) WIREGUARD

Cryptokey Routing

PUBLIC KEY :: IP ADDRESS

) WIREGUARD

Cryptokey Routing

Server Config

[Interface]

PrivateKey =
YANz5TF+1XXJtel4tji3zIMNg+hd2rYUIgIBgB3fBmk=
ListenPort = 41414

[Peer]

PublicKey =
XTIBA5rboUvnH4htodjb6e697Q]jLERt1INAB4mZqp8Dg=
AllowedIPs = 10.192.122.3/32,10.192.124.1/24

[Peer]

PublicKey =
TrMvSoP4jYQLY6RIzBghssQqY3vxI2Pi+y71LOWWXX0=
AllowedIPs = 10.192.122.4/32,192.168.0.0/16

Client Config

[Interface]

PrivateKey =
gI6EdUSYvn8ugX0t8QQD6Yc+IyiZxIhp3GInSWRTWGE=
ListenPort = 21841

[Peer]

PublicKey =
HIgo9xNzIMWLKASShiTqIlybxZ0U3wGLiUeJ1PKf8ykw=
Endpoint = 192.95.5.69:41414

AllowedIPs = 0.0.0.0/0

) WIREGUARD

Cryptokey Routing

Userspace:
send (packet)

WireGuard:

recv(encrypted)

Linux kernel:

Ordinary routing table
- wg0

WireGuard:

decrypt(packet)
- which peer

WireGuard:

Destination IP address
- which peer

WireGuard:

Source IP address
< peer’s allowed
IPs

WireGuard:
encrypt(packet)

send(encrypted)
- peer’s endpoint

Linux:

Hand packet to
networking stack

) WIREGUARD

Cryptokey Routing

= Makes system administration very
simple.

= Ifit comes from interface wg0 and is
from Yoshi’s tunnel IP address of
192.168.5.17,then the packet
definitely came from Yoshi.

= Theiptables rules are plain and clear.

) WIREGUARD

Timers: A Stateless Interface for a Stateful Protocol

= As mentioned prior, WireGuard appears “stateless” to user space; you
set up your peers, and then it just works.
= Aseries of timers manages session state internally, invisible to the user.

= Every transition of the state machine has been accounted for, so there
are no undefined states or transitions.

= Event based.

) WIREGUARD

Timers

If no session has been established for 120 seconds,
User space sends packet. send handshake initiation.

Resend handshake initiation.

No handshake response after 5
seconds.

Send an encrypted empty packet after 10 seconds, if

Successful authentication of)) :)
we don’t have anything else to send during that time.

incoming packet.

Send handshake initiation.

No successfully authenticated
incoming packets after 15 seconds.

) WREGUARD

Security Design Principle 2: Simplicity of Interface

= The interface appears stateless to the system administrator.

» Add aninterface -wg0,wgl,wg2, ... - configure its peers, and immediately
packets can be sent.

If it’s not set up correctly, most of the time it will just refuse to work, rather than
running insecurely: fails safe, rather than fails open.

Endpoints roam, like in mosh.

Identities are just the static public keys, just like SSH.

Everything else, like session state, connections, and so forth, is invisible to admin.

) WIREGUARD

Simple Composable Tools

= Sincewg (8) is avery simple tool, that works with 1p (8), other more complicated tools
can be built on top.

= Integration into various network managers:
= OpenWRT
= OpenRC netifrc
= NixOS
= systemd-networkd
= LinuxKit
= Ubiquiti’s EdgeOS
= NetworkManager

) WIREGUARD

Simple Composable Tools: wg—quick

= Simple shell script

= # wg—quick up vpnO
wg-quick down vpnoO

= /etc/wireguard/vpn0.conf:

[Interface]

Address = 10.200.100.2

DNS = 10.200.100.1

PostDown = resolvconf -d %i

PrivateKey = uDmWOQECQZWPv4K83yg26b3L4r93HvLRcal997IGLEE=

[Peer]
PublicKey = +LRS630XvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehOlE=
AllowedIPs 0.0.0.0/0

Endpoint = demo.wireguard.io0:51820

) WIREGUARD

Network Namespace Tricks

= The WireGuard interface can live in one namespace, and the physical interface can live
in another.

= Only let a Docker container connect via WireGuard.

= Only let your DHCP client touch physical interfaces, and only let your web browser see
WireGuard interfaces.

= Nice alternative to routing table hacks.

) WIREGUARD

Namespaces: Containers

1p addr
1: lo: <LOOPBACK,UP,LOWER_UP>
inet 127.0.0.1/8 scope host lo
17: wgO: <NOARP,UP,LOWER_UP>
inet 192.168.4.33/32 scope global wg0

) WIREGUARD

Namespaces: Personal VPN

1p addr
1: lo: <LOOPBACK,UP,LOWER_UP>
inet 127.0.0.1/8 scope host lo
17: wgO: <NOARP,UP,LOWER_UP>
inet 192.168.4.33/32 scope global wg0

) WIREGUARD

Security Design Principle 3: Static Fixed Length Headers

= All packet headers have fixed width fields, so no parsing is necessary.
= Eliminates an entire class of vulnerabilities.

= No parsers = no parser vulnerabilities.

= Quite a different approach to formats like ASN.1/X.509 or even variable
length IP and TCP packet headers.

) WIREGUARD

Security Design Principle 4: Static Allocations and
Guarded State

= All state required for WireGuard to work is allocated during config.

= No memory is dynamically allocated in response to received packets.
= Eliminates another entire classes of vulnerabilities.

= Places an unusual constraint on the crypto, since we are operating over a finite amount of
preallocated memory.

= No state is modified in response to unauthenticated packets.
= Eliminates yet another entire class of vulnerabilities.

= Also places unusual constraints on the crypto.

) WIREGUARD

Security Design Principle 5: Stealth

= Some aspects of WireGuard grew out of a
kernel rootkit project.

= Should not respond to any
unauthenticated packets.

= Hinder scanners and service discovery.

= Service only responds to packets with
correct crypto.

= Not chatty at all.

= When there’s no data to be exchanged, both
peers become silent.

€) WREGUARD

Security Design Principle 6: Solid Crypto

= We make use of Noise Protocol Framework - noiseprotocol.org
= WireGuard was involved early on with the design of Noise, ensuring it could do what we needed.
= Custom written very specificimplementation of Noise_IKpsk2 for the kernel.

= Related in spirit to the Signal Protocol.

» The usual list of modern desirable properties you’d want from an authenticated key
exchange

= Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305
= Lack of cipher agility! (Opinionated.)

) WIREGUARD

Security Design Principle 6: Solid Crypto

= Strong key agreement & authenticity

Key-compromise impersonation resistance

Unknown key-share attack resistance

Key secrecy

Forward secrecy

Session uniqueness

Identity hiding

Replay-attack prevention, while allowing for network packet reordering

) WIREGUARD

Crypto Designed for Kernel

= Design goals of guarded memory safety, few allocations, etc have direct
effect on cryptography used.

= |deally be 1-RTT.
= Fast crypto primitives.

= Clear division between slowpath for ECDH and fastpath for symmetric
crypto.

= Handshake in kernel space, instead of punted to userspace daemon like
IKE/IPsec.

= Allows for more efficient and less complex protocols.

= Exploit interactions between handshake state and packet encryption state.

) WIREGUARD

Formal Symbolic Verification

= The cryptographic protocol has been formally verified using Tamarin.

Proof scripts

Lemma Sess1on_unlqueness: -

all-traces
"(V pki pkr peki pekr psk ck #i.
(IKeys({ <pki, pkr, peki, pekr, psk, ck>) @ #i) -
(=(3 peki2 pekr2 #k.
(IKeys(<pki, pkr, peki2, pekr2, psk, ck>) @ #k) A
(~(#k = #1))))) A
(¥ pki pkr peki pekr psk ck #i.
(RConfirm(<pki, pkr, peki, pekr, psk, ck>) @ #i)
(=(3 peki2 pekr2 psk2 #k.
(RConfirm(<pki, pkr, peki2, pekr2, psk2, ck>) @ #k) A
(~(#k = #1)))))"
by sorry

lemma secrecy without psk_compromise:
all-traces
"(V pki pkr peki pekr psk ck #i #j.
((IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i) A
(K(ck) @ #j)) =
((3 #j2. Reveal PSK(psk) @ #j2) v (psk = 'nopsk'))) &
(V pki pkr peki pekr psk ck #i #j.
((RConfirm(<pki, pkr, peki, pekr, psk, ck>) @ #i) A
(K(ck) @ #j)) =
((3 #j2. Reveal PSK(psk) @ #j2) v (psk = 'nopsk')))"
by sorry

lemma key secrecy [reuse]:
all-traces
"Y pki pkr peki pekr psk ck #1i #i2.
((IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i) a
(RKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i2))
(((=(3 #j. K(ck) @ #3)) v
(3 #j #j2.
(Reveal AK(pki) @ #j) A (Reveal EphK(peki) @ #j2))) v
(3 #j #j2.
(Reveal AK(pkr) @ #j) a (Reveal EphK(pekr) @ #j2)))"
by sorry

lemma identity hiding:
all-traces
"¥ pki pkr peki pekr ck surrogate #i #j.
(((RKeys(<pki, pkr, peki, pekr, ck>) @ #i) A
(Identity Surrogate(surrogate) @ #i)) A
(K(surrogate) @ #j)) =
(((3 #3.1. Reveal AK(pkr) @ #j.1) v
(3 #j.1. Reveal AK(pki) @ #j.1)) v
(3 #j.1. Reveal EphK(peki) @ #j.1))"
by sorry

Py

Lemma: key_secrecy

Applicable Proof Methods: Goals sorted according to heuristics
adapted to stateful injective protocols

1. simplify
2. induction

a. autoprove (A. for all solutions)
b. autoprove (B. for all solutions) with proof-depth bound 5

Constraint system
last: none

formulas:
3 pki pkr peki pekr psk ck #i #i2.
(IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i) a
(RKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i2)

A
(3 #j. (K(ck) @ #))) A
(V' #j #j2.
(Reveal_AK(pki) @ #j) A (Reveal _EphK(peki) @ #j2) = L) A
(V #j #j2.
(Reveal_AK(pkr) @ #j) A (Reveal_EphK(pekr) @ #j2) = 1)

equations:
subst:
conj:

lemmas:
¥V id id2 ka kb #i #j.
(Paired(id, ka, kb) @ #i) A (Paired(id2, ka, kb) @ #j)

=

#i=#

V pki pkr peki pekr psk ck #i.
(IKeys(<pki, pkr, peki, pekr, psk, ck>) @ #i)
=

((3 #j.
(RKeys(<pki, pkr, peki, pekr, psk, ck>) @ #j)
A
#j< #i) v

(psk = 'nopsk') v

(3 #j. (Reveal_PSK(psk) @ #]) A #] < #i)) [(\ Loading, please wait

... Cance

) WIREGUARD

Multicore Cryptography

* Encryption and decryption of packets can be spread out to all
cores in parallel.

* Nonce/sequence number checking, netif_rx, and
transmission must be done in serial order.

» Requirement: fast for single flow traffic in addition to
multiflow traffic.

= Different from usual assumptions.

) WIREGUARD

Multicore Cryptography

= Single queue, shared by all CPUs, rather than queue per CPU

= No reliance on process scheduler, which tends to add latency when waiting
for packets to complete

= Serial transmission queue waits on ordered completion of parallel queue
items

» Using netif_receive_skbinstead of netif_rx topushbackon
encryption queue

* Bunching bundles of packets together to be encrypted on one CPU
results in high performance gains

= How to choose the size of the bundle?

) WIREGUARD

Generic Segmentation Offload

» By advertising that the net_device suppports GSO,
WireGuard receives massive “super-packets” all at the same
time.

» WireGuard can then split the super-packets by itself, and
bundle these to be encrypted on a single CPU all at once.

» Each bundleis a linked list of skbs, which is added to the ring
buffer queue.

) WIREGUARD

Multicore Cryptography

) WIREGUARD

Performance

» Being in kernel space means that it is fast and low latency.

= No need to copy packets twice between user space and kernel space.

= ChaCha20Poly1305 is extremely fast on nearly all hardware, and safe.

= AES-NI is fast too, obviously, but as Intel and ARM vector instructions become wider
and wider, ChaCha is handedly able to compete with AES-NI, and even perform better
in some cases.

= AES is exceedingly difficult to implement performantly and safely (no cache-timing
attacks) without specialized hardware.

= ChaCha20 can be implemented efficiently on nearly all general purpose processors.

= Simple design of WireGuard means less overhead, and thus better
performance.

= Less code - Faster program? Not always, but in this case, certainly.

) WIREGUARD

Performance: Measurements

Bandwidth
OpenVPN (AES) ' 257
IPSec (ChaPoly) ' 825
IPSec (AES) ' 881

wiecard (NG '

0 128 256 384 512 640 768 896 1024
Megabits per Second

OpenVPN (AES)

IPSec (ChaPoly)

IPSec (AES)

Ping Time

’ 0.508

' 0.501

WireGuard - 0.403

0

0.25 0.5 0.75 1
Milliseconds

1.25

1.5

' 1.541

€) WREGUARD

Confluence of Principles - The Key Exchange

Handshake Initiation Message

Handshake Response Message

v

A

Both Sides Calculate Symmetric Session Keys

Transport Data

Transport Data

v

A

) WIREGUARD

The Key Exchange
= The key exchange designed to keep our principles static allocations,
guarded state, fixed length headers, and stealthiness.

= |n order for two peers to exchange data, they must first derive
ephemeral symmetric crypto session keys from their static public keys.

= Either side can reinitiate the handshake to derive new session keys.

= So initiator and responder can “swap” roles.

= Invalid handshake messages are ignored, maintaining stealth.

) WIREGUARD

The Key Exchange: (Elliptic Curve) Diffie-Hellman
Review

private A = random()
public A = derive_public(private A)

private B = random()
public B = derive_public(private B)

ECDH(private A, public B) == ECDH(private B, public A)

) WIREGUARD

The Key Exchange: NoiselK

One peer is the initiator; the other is the responder.

Each peer has their static identity - their long term static keypair.

For each new handshake, each peer generates an ephemeral keypair.

The security properties we want are achieved by computing ECDH () on
the combinations of two ephemeral keypairs and two static keypairs.

) WIREGUARD

The Key Exchange: NoiselK

Alice Bob

Static Private Static Public

Ephemeral Public

€) WREGUARD

The Key Exchange: NoiselK

Bob Alice

Static Private Static Public

Ephemeral Private

€) WREGUARD

The Key Exchange: NoiselK

= One peer is theinitiator; the other is the responder.
» Each side has a static identity keypair and an ephemeral session keypair.

= Session keys =Noise(
ECDH(ephemeral, static),
ECDH(static, ephemeral),
ECDH(ephemeral, ephemeral),
ECDH(static, static)

)

* The first three ECDH () make up the “triple DH”, like in Signal, and the last
one allows for authentication in the first message, for 1-RTT.

) WIREGUARD

The Key Exchange: NoiselK - Initiator > Responder

= Theinitiator begins by knowing the long term static public key of the responder.

= Theinitiator sends to the responder:
= Acleartext ephemeral public key.

» The initiator’s public key, authenticated-encrypted using a key that is an (indirect) result of:

ECDH(Ei, Sr) == ECDH(Sr, E1)

= After decrypting this, the responder knows the initiator’s public key.

= Only the responder can decrypt this, because it requires control of the responder’s static private key.
= No forward secrecy for identity hiding.

= Amonotonically increasing counter (usually just a timestamp in TAI64N) that is authenticated-
encrypted using a key that is an (indirect) result of the above calculation as well as:

ECDH(Si, Sr)==ECDH(Sr, Si)

= This counter prevents against replay DoS.

= Authenticating it verifies the initiator controls its private key.
= Authentication in the first message - static-static ECDH ().

) WIREGUARD

The Key Exchange: NoiselK - Responder - Initiator

* The responder at this point has learned the initiator’s static public key from
the prior first message, as well as the initiator’s ephemeral public key.

= The responder sends to the initiator:
= Acleartext ephemeral public key.

= An empty buffer, authenticated-encrypted using a key that is an (indirect) result of the
calculations in the prior message as well as:

ECDH(Er, Ei) == ECDH(Ei, Er)
and
ECDH(Er, Si) == ECDH(Si, Er)

= Authenticating it verifies the responder controls its private key.

) WIREGUARD

The Key Exchange: Session Derivation

= After the previous two messages (initiator = responder and responder
= initiator), both initiator and responder have something bound to
these ECDH () calculations:

- ECDH(Ei, Sr) == ECDH(Sr, Ei)
- ECDH(Si, Sr) == ECDH(Sr, Si)
- ECDH(Ej, Er) == ECDH(Er, Ej)
- ECDH(Si, Er) == ECDH(Er, Si)

* From this they can derive symmetric authenticated-encryption session
keys - one for sending and one for receiving.

» When the initiator sends its first data message using these session keys,
the responder receives confirmation that the initiator has understood
its response message, and can then send data to the initiator.

) WIREGUARD

The Key Exchange

= Just 1-RTT.

= Extremely simple to implement
in practice, and doesn’t lead to
the type of complicated messes
we see in OpenSSL and
StrongSwan.

zx2c4@thinkpad cloc noise.c

= No certificates, X.509, or ASN.1:
both sides exchange very short
(32 bytes) base64-encoded
public keys, just as with SSH.

) WREGUARD

Poor-man’s PQ Resistance

Optionally, two peers can have a pre-shared key, which gets “mixed” into
the handshake.

Grover’s algorithm - 256-bit symmetric key, brute forced with 2128
complexity.

= This speed-up is optimal.

Pre-shared keys are easy to steal, especially when shared amongst lots of
parties.

= But simply augments the ordinary handshake, not replaces it.

By the time adversary can decrypt past traffic, hopefully all those PSKs
have been forgotten by various hard drives anyway.

) WIREGUARD

Hybrid PQ Resistance

= Alternatively, do a post-quantum key exchange, through, the tunnel.

= PQ primitives not directly built-in because they are slow and new and
likely to change.

= PSK design allows us to easily swap them in and out for experiments as
we learn more.

) WIREGUARD

Security Design Principle 7: Abuse Resistance

= Hashing and symmetric crypto is fast, but pubkey crypto is slow.

We use Curve25519 for elliptic curve Diffie-Hellman (ECDH), which is one
of the fastest curves, but still is slower than the network.

Overwhelm a machine asking it to compute ECDH ().
= Vulnerability in OpenVPN!

UDP makes this difficult.

WireGuard uses “cookies” to solve this.

) WIREGUARD

Cookies: TCP-like

= Dialog:
= Initiator: Compute this ECDH ().

= Responder: Your magic word is “baby penguin”. Ask me again with
the magic word.

= Initiator: My magic word is “baby penguin”. Compute this ECDH ().

= Proves IP ownership, but cannot rate limit IP address without
storing state.

= Violates security design principle, no dynamic allocations!

= Always responds to message.

= Violates security design principle, stealth!

= Magic word can be intercepted.

) WIREGUARD

Cookies: DTLS-like and IKEv2-like

= Dialog;:
= Initiator: Compute this ECDH ().

= Responder: Your magic word is “cbdd7c.bb71d9c0”. ASk me again with the magic word.

= Initiator: My magic word is “cbddrc.bbridoco”. Compute this ECDH ().
= “cbdd7c..bb71d9c0” == MAC(responder_secret,)

Where responder_secret changes every few minutes.
= Proves IP ownership without storing state.

= Always responds to message.

= Violates security design principle, stealth!
= Magic word can be intercepted.

= |nitiator can be DoS’d by flooding it with fake magic words.

) WIREGUARD

Cookies: HIPv2-like and Bitcoin-like

Dialog:
= Initiator: Compute this ECDH ().
= Responder: Mine a Bitcoin first, then ask me!

= Initiator: | toiled away and found a Bitcoin. Compute this ECDH ().

Proof of work.

Robust for combating DoS if the puzzle is harder than ECDH ().

However, it means that a responder can DoS an initiator, and that initiator and
responder cannot symmetrically change roles without incurring CPU overhead.

= Imagine a server having to do proofs of work for each of its clients.

) WIREGUARD

Cookies: The WireGuard Variant

Each handshake message (initiation and response) has two macs: macl and mac2.

maclis calculated as:
HASH ()

= If this mac s invalid or missing, the message will be ignored.

= Ensures that initiator must know the identity key of the responder in order to elicit a response.

= Ensures stealthiness - security design principle.

If the responder is not under load (not under DoS attack), it proceeds normally.

If the responder is under load (experiencing a DoS attack), ...

) WIREGUARD

Cookies: The WireGuard Variant

» If the responder is under load (experiencing a DoS attack), it replies with a
cookie computed as:
XAEAD (
key=HASH (),
additional_data=handshake_message,
MAC (key: responder_secret,)

)

= mac?2 isthen calculated as:
MAC (key: cookie,)

= Ifit’s valid, the message is processed even under load.

) WIREGUARD

Cookies: The WireGuard Variant

Once IP address is attributed, ordinary token bucket rate limiting can be
applied.

Maintains stealthiness.

Cookies cannot be intercepted by somebody who couldn’t already initiate
the same exchange.

Initiator cannot be DoS’d, since the encrypted cookie uses the original
handshake message as the “additional data” parameter.

= An attacker would have to already have a MITM position, which would make DoS
achievable by other means, anyway.

) WIREGUARD

Fast, Modern, Secure

Handshake based on NoiselK

= Less than 4,000 lines of code.

= Easily implemented with basic Fundamental property of a
data structures. secure tunnel: association

, , _ between a peer and a peer’s IPs.
= Design of WireGuard lends itself

to coding patterns that are

Extremely performant - best in

secure in practice. class.

= Minimal state kept, no dynamic = Simple standard interface via an
allocations. ordinary network device.

= Stealthy and minimal attack * Opinionated.
surface.

) WIREGUARD

Fast, Modern, Secure Jason Donenfeld

= Personal website:

= Available now for all major Linux distros, FreeBSD, WWW.zx2c4.com

OpenBSD, macOS, i0S, and Android, Windows on its way:
wireguard.com/install « Email:

Jason@zx2c4.com

= Paper published in NDSS 2017, available at:
wireguard.com/papers/wireguard.pdf

= $ git clone https://git.zx2c4.com/WireGuard

= wireguard@lists.zx2c4.com
lists.zx2c4.com/mailman/listinfo/wireguard

= #wireguard on Freenode
= STICKERS FOR EVERYBODY

= Plenty of work to be done: looking for interested devs.

) WIREGUARD

https://www.wireguard.com/install/
https://www.wireguard.com/papers/wireguard.pdf
https://git.zx2c4.com/WireGuard
mailto:wireguard@lists.zx2c4.com
https://lists.zx2c4.com/mailman/listinfo/wireguard
http://www.zx2c4.com/
mailto:Jason@zx2c4.com

ProtonMail

A critical analysis.

What is ProtonMail?

Webmail provider, similar user experience to

Gmail...

About Security Blog Careers Support Enterprise v LOG IN SIGN UP

e “Allemails are secured automatically with

end-to-end encryption. This means even we

cannot decrypt and read your emails.” Secure Email Based

in Switzerland

e Browser as well as mobile applications (iOS,

Android.) . Secure Your Communications with ProtonMail

What are ProtonMail’s security claims?

e “Allemails are secured automatically with end-to-
end encryption. This means even we cannot decrypt

and read your emails. ” About Security Blog Careers Support Enterprise v

® “ProtonMail conservatively assumes that all mail
servers may eventually be compromised. Thus, Secu re Emall Based
ProtonMail uses end-to-end encryption to ensure I n SWI tze I"| an d
that plaintext email data (s never sent to the server.

If a server only contains encrypted messages, then : Secure Your Communications with ProtonMail

the risks of a central server breach are mitigated.”
GET YOUR ENCRYPTED EMAILACCOUNT

Central claim: end-to-end encryption.

But what is end-to-end encryption?

End-to-end encryption has been defined as
confidentiality, integrity and authentication
between two parties by PGP (which
ProtonMail uses for encryption), then by

OTR, then by Signal and others.

I decided to study whether ProtonMail
achieves confidentiality and authenticity

based on their own claims and definitions.

Given that ProtonMail uses PGP to provide end-to-end encryption, we con-
sider the following security properties as being the components that achieve end-
to-end encryption in the context of ProtonMail®. Given that this is a practical
analysis, we colloquialize the understanding of the security properties provided
by the cited work into the following definitions:

¢ Confidentiality. An email sent from any client to any other client can
only be decrypted by the recipient and, optionally, the sender.

o Authenticity. If a client receives a message that appears to be from
another client, then this apparent sender must have sent the email to
the recipient. Note that this definition of authenticity also encapsulates
the standard definition of integrity in production end-to-end encryption
systems.

Examining ProtonMail protocol flows.

Two types of flows:

ProtonMail-to-ProtonMail: A sends a PGP-

encrypted message m to B through server P.

“Encrypt-to-Outside”: A sends an encrypted
email to S through P which relays the email
to S through M.

o Ssends a PGP-encrypted reply r to A using
the web interface J and A’s public key, both
provided by P.

2.1 Security Assumptions

e urlty definitions concern thre ients: ProtonMail userotonMail
’nd Microsoft Outlook® use We also consider two Seryers: Pro-
tonMail webmail serve nd Microsoft Outlook webmail server@ These

principals operate under the following network assumptions:

e Transport Layer Security. We assume that all communications be-
tween all principals occur over an authenticated TLS link.

e No Client State Compromise. We assume that none of the clients A,
B and § ever suffer a local state compromise.

¢ Untrusted Server. We assume that P is untrusted and could act with
the intent to recover encrypted communications between clients A, B, S.
We treat M as controlled by an adversary.

The Untrusted Server assumption is directly informed by the above-mentioned
quotes from ProtonMail.

We are therefore assuming a relatively safe threat model where transport
layer communications are always encrypted and where local state compromise
never occurs.

Web application vs. smartphone.

A P B
‘ Has application .J ‘ ‘ Has public key Bpr

‘ PGP, 5,, «— PGPSEND(.J,m, B,;)

PGP, 5, PGP, 5,,

I I I
(a) A sends an email to B using the ProtonMail webmail application. We assume that A
authenticates the fingerprint for PGP public key By out of band.
___|
A P B
| Has application | ‘ Has public key By, I

Bpk Bpk

‘ PGP,.,5,, +— PGPSEND(I, m, By) ‘

PGP, 5, PGP,.. 5,

(b) A sends an email to B using the ProtonMail smartphone application. We assume that A
authenticates the fingerprint for PGP public key By out of band.

Web application vs. smartphone.

A P B
‘ Has application .J ‘ ‘ Has public key Bpr

‘ PGP, 5,, «— PGPSEND(.J,m, B,;)

PGP, 5, PGP, 5,,

I I I
(a) A sends an email to B using the ProtonMail webmail application. We assume that A
authenticates the fingerprint for PGP public key By out of band.
___|
A P B
| Has application | ‘ Has public key By, I

Bpk Bpk

‘ PGP,.,5,, +— PGPSEND(I, m, By) ‘

PGP, 5, PGP,.. 5,

I I I
(b) A sends an email to B using the ProtonMail smartphone application. We assume that A
authenticates the fingerprint for PGP public key By out of band.
10

Code delivery: what’s the difference?

Web-based versus code-signed downloads.

Web-based: Code server unauthenticated,
from scratch, at every request. If P swaps J
out for malicious code, it’s almost
impossible to detect. P can also do this
selectively.

Code-signed binaries: Code signature from
both the publisher and the app store.
Version numbers! Traceable, runs locally

and only updates with user consent.

P
Has application .J

B
Has public key Byx

‘ PGP, 5,, < PG

PSEND(J,m, Bpr)

PGPo.5,.,

PGPy 5,

I
(a) A sends an email to B using the ProtonMail webmail application. We assume that A
authenticates the fingerprint for PGP public key By out of band.

B
Has public key By

A P
| Has application 1 | ‘
Bpk Bpk
‘ PGP o5, +— PGPSEND(I,m, Byt) ‘
PGPy, 5, PGPy, 5,
I I

(b) A sends an email to B using the ProtonMail smartphone application. We assume that A
authenticates the fingerprint for PGP public key B out of band.

11

“Encrypt-to-Outside” feature.

A P M S
I Has key psk ‘ ‘ Has application J | | ‘ l Has key psk

(Epsk‘_m‘_n‘_mi: n, t) — ENC(pSk m, 0)

Epsk,:m.n.ﬂ.t; n,t URIJ: A-_uk; (Epsk_ru_n_w.t- n, t) URIJ’) Apk-: (Epsk.m,n,ﬂ,_h n, ﬂ

HTTPSGET(URI,)

/

m<— DEC(pSk Epsk.m..-n..ﬂ,_i.! n, pj: f)
PGP, ,, «— PGPSEND(J.r, A,x)

PGPJ'.A;:L— PGPI'.A;;L—

Figure 3: A sends an email containing message m to Microsoft Outlook user S
symmetrically encrypted using a pre-shared key psk. S responds through the
webmail interface provided by P, encrypting his reply r using PGP to Ay.
12

“Encrypt-to-Outside” feature.

A P M S
I Has key psk ‘ ‘ Has application J | | ‘ l Has key psk

(Epsk‘_m‘_n‘_mi: n, t) — ENC(pSk m, 0)

Epsk,:m.n.ﬂ.t; '.’I.._.t URIJ A-_uk; (Epsk_ru_n_w.t- n, t) URIJ’ Apk-: (Epsk.m,n,ﬂ,_i? n, ﬂ

HTTPSGET(URI,)

/

m<— DEC(pSk Epsk.m..-n..ﬂ,_i.! n, pj: f)
PGP, ,, «— PGPSEND(J.r, A,x)

PGPJ'.A;:L— PGPI'.A;;L—

Figure 3: A sends an email containing message m to Microsoft Outlook user S
symmetrically encrypted using a pre-shared key psk. S responds through the
webmail interface provided by P, encrypting his reply r using PGP to Ay.
13

“Encrypt-to-Outside” feature.

A P M S
I Has key psk ‘ ‘ Has application J | | ‘ l Has key psk

(Epsk‘_m‘_n‘_ﬂi: n, t) — ENC(pSk m, 0)

Epsk,nl.ﬂ.m-t; '."E.._.t URIJ A;Uk? (Epik.fu.n.ﬂ.t~n?t) URI} Apk':(Epsk.m,,n,ﬂ,_h n, ﬂ
P can obtain psk and m by HTTPSGET(URI,)
replacing J. !
M can obtain psk, r, m and m — DEC(psk, Eyer .02, 0.1)
even encrypt a fake r to A. PGPy 4, ¢— PGPSEND(J, 1, Apk)
PGP, 4,. PGP} 4,

Figure 3: A sends an email containing message m to Microsoft Outlook user S
symmetrically encrypted using a pre-shared key psk. S responds through the
webmail interface provided by P, encrypting his reply r using PGP to Ay.
14

Other issues found in ProtonMail.

ProtonMail uses the bcrypt [19] password hash which slows down dictio-
nary attacks. However, ProtonMail restricts the number of bcrypt rounds to a
relatively small number of 2'° [17] which, especially when coupled with recent
advances in bcrypt computation [20], renders dictionary attacks feasible once

more.

In our testing’ of the ProtonMail applications, we were able to set both user
mailbox passwords and “Encrypt-to-Outside” pre-shared key passwords that
were exceptionally weak and vulnerable to simple guessing attacks. These pass-
words included “17, “iloveyou” and “password” and were used to derive encryp-
tion keys for PGP secret keys that were later stored on ProtonMail servers as
well as for “Encrypt-to-Outside” symmetric encryption.

Fixed

¢ Fixed a bug where the SRP modulus signature was not verified by the web client. Reported by N. Kobeissi and S. Zanella.

15

ProtonMail’s response?

® Ad-hominem: Personal attacks, smears, claiming I
About Security Blog Careers Support Enterprise v

did my analysis for ulterior motives...

® Misrepresentation of the findings: “weak passwords

are weak”. Articles & News v
® Side-stepping the issue: Claim the security goals
don’t match their claims, despite being based on
their own definitions. ;
® But the most damning quote of all: Response tO analySIS Of
“If the recipient’s email service is the probable attacker PrOton Ma | I ,S Cryptog ra p h | C
in your threat model, then you probably shouldn’t email a rch itectu re
them at that address” —i.e. we don’t offer end-to-end Posted on January, 20, 2019 by Admin

encryption after all.

16

Next time:
New Secure
Protocols

