CSCI-UA.9480
Introduction to Computer Security

((/ Session 1.4
T’ Transport Layer Security

NYU

Prof. Nadim Kobeissi

HTTPS and TLS

What is TLS?

e TheSinHTTPS.

e Most likely the most relevant web
encryption protocol.

e Built on all the technologies we’ve seen so

far:
o Public key cryptography.
o Symmetric encryption.

o Hashing.

HTTPS Pages by Country (Chrome)

—— Brazil —— Germany France —— Indonesia —— India Japan —— Mexico —— Russia —— Turkey /2 p
0,
100% Sep 15, 2018
United States: 85%
P
75%
50%
25%
0%
Jul 01,2015 Jul 01,2016 Jul 01,2017 Jul 01,2018

Source: https://transparencyreport.google.com/https

https://transparencyreport.google.com/https/

HTTPS Pages by Platform (Chrome)

—— Windows —— Android Chrome —— Linux —— Mac
100% Sep 15,2018
Chrome: 90%
75%
50%
</
e
25%
0%
Jul 07,2015 Jul 01,2016 Jul 01,2017 Jul 01,2018

Source: https://transparencyreport.google.com/https 5

https://transparencyreport.google.com/https/

HTTPS Pages by Google Service

— Advertising —— Google Calendar Google Drive . —— Gmail ~—— Google Maps Google News ~ —— YouTube

100% ——=—

- -‘--dillllllll-."”)
o~ P A

-y

75%

50%

25%

0%
Jan 01,2014 Jan 01, 2016 Jan 01,2018

Source: https://transparencyreport.google.com/https 6

https://transparencyreport.google.com/https/

HTTPS Pages by Country (Firefox)

Q

—— All users USA users

80% Germany users Germany users I@
= USA users All users

70% Japan users Japan users 70 56252% 4

60%

50%

40%

30%

20%

10%

Percent of Pageloads over HTTPS (14 day moving average)

0,
0% o 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018 Julzom

Source: https://letsencrypt.org/stats 7

https://letsencrypt.org/stats/

£ Did you know?

SSL 1.0 was never released due to critical
security flaws. SSL 2.0 barely lasted one year
before being replaced.

CSCI-UA.9480: Introduction to Computer Security - Nadim Kobeissi

History of TLS

Nick Sullivan @ m y
/ @grittygrease

Guess what happened today? TLS 1.3

e SSL (Secure Socket Layer) 1.0 was never

released. SSL 2.0 laSted a yeal‘. SSL 3.0 Surpassed TLS 1.0 as the second-most
released in 1996 common version of TLS seen by Cloudflare.
) #tls13

e TLS1.0releasedin1999.
e TLS1.1releasedin 2006.
e TLS1.2releasedin 2008.
e TLS1.3releasedin 2018.

1:28 AM - 12 Sep 2018

As discussed last time: protocols.

In protocols, we reason about:

e Principals: Alice, Bob.

e Security goals: confidentiality, authenticity,
forward secrecy...

e Use cases and constraints.

e Attacker model.

e Threat model.

10

Protocols need to do things.

Protocols are frequently entrusted with:

e Communicating secret data without a
malicious party being able to read it:
confidentiality.

e Ensuring that any data Bob receives that
appears to be from Alice is indeed from
Alice: authenticity.

e Limiting the damage that can be caused by

device compromise or theft: post-

compromise security.

11

Protocols need to do things.

Protocols have building blocks:

e Public key agreement: Client and server
agree on some shared secret key over an
insecure channel.

e Symmetric encryption: Encrypting and
decrypting data with a shared secret key.

e Hashing and signatures: Providing integrity

and authenticity of communicated data.

12

TLS is a secure channel

Authenticated key exchange phase:
Exchange public keys, establish shared
secrets and start a session.

Application data/messaging stage: Send
encrypted, authenticated data (websites,

messages, files, videos...)

protocol.

‘Knows (skc, pkc),psk|

Negotiation (offer -, modes)

‘Knows (sks.pks),psk‘

~«

Authenticated Key Exchange (cid, k., ks,psk’)

New client session:
C =CWcid w (offer., modes,
pkc.pks, psk,
ke ks, psk’)

New server session:

S = S Wcid v (offer, modeg,

pkc:pks, psk,
ke ks, psk’)

Authenticated Encryption (enck(mg),enck(my),...)

Application Data Stream:
id
<SS g, My,...

I

Application Data Stream:

cid
Ce— S:mgy,my,...

I

13

TLS is a secure channel protocol.

Client’s local state: server certificate,
accepted cipher configurations, ephemeral
public key pair, pre-shared secret for
session resumption...

Server’s local state: long-term keys,
accepted cipher configurations, pre-shared

secret for session resumption...

‘Knows (skc, pkc),psk|

Negotiation (offer -, modes)

‘Knows (sks.pks),psk‘

~«

Authenticated Key Exchange (cid, k., ks,psk’)

New client session:
C =CWcid w (offer., modes,

pkc.pks, psk,
ke ks, psk’)

New server session:

S = S Wcid v (offer, modeg,

pkc:pks, psk,
ke ks, psk’)

Authenticated Encryption (enck(mg),enck(my),...)

Application Data Stream:
id
<SS g, My,...

I

Application Data Stream:

cid
Ce— S:mgy,my,...

I

14

Cipher suites?

e Set of supported cryptographic primitives by
the client and server.
e What if the server advertises a bad cipher

suite?

o FREAK, POODLE, LOGJAM...

AES

Client £

NN

SHA2

Server

l
el _

m@

15

Evaluating HTTPS overall security.

SSL Report: nyu.edu (216.165.47.10)

Assessed on: Mon, 17 Sep 2018 12:50:49 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Key Exchange

20 40 60 80 100

o

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

This server supports weak Diffie-Hellman (DH) key exchange parameters. Grade capped to B. MORE INFO »

This server does not support Forward Secrecy with the reference browsers. Grade capped to B. MORE INFO »

16

: Supported protocols.

Protocols

TLS 1.3 No
TLS 1.2 Yes
TLS 11 Yes
TLS 1.0 Yes
SSL 3 No
SSL 2 No

For TLS 1.3 tests, we currently support draft version 28.

17

NYU.edu: Supported cipher suites.

Cipher Suites

TLS 1.2 (suites in server-preferred order)
TLS_DHE_RSA WITH_AES 256 GCM_SHA384 (@x9f) DH 1024 bits FS WEAK
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (ex9e) DH 1024 bits FS WEAK
TLS_DHE_RSA WITH_AES 256 _CBC_SHA256 (8x6b) DH 1024 bits FS WEAK
TLS_DHE_RSA WITH AES 256 _CBC_SHA (0x39) DH 1024 bits FS WEAK
TLS_DHE_RSA WITH_AES 128 CBC SHA256 (0x67) DH 1024 bits FS WEAK
TLS_DHE_RSA_WITH_AES_128_CBC_SHA (8x33) DH 1024 bits FS WEAK
TLS_DHE_RSA WITH 3DES_EDE_CBC_SHA (6x16) DH 1024 bits FS WEAK
TLS_RSA WITH_AES 256 GCM_SHA384 (6x9d) WEAK
TLS_RSA_WITH_AES_128_GCM_SHA256 (ox9c) WEAK

TLS_RSA WITH_AES 256 CBC_SHA256 (0x3d) WEAK

TLS_RSA WITH_AES 256 CBC_SHA (0x35) WEAK

TLS_RSA_WITH_AES_128 CBC_SHA256 (ex3c) WEAK
TLS_RSA_WITH_AES_128 CBC_SHA (ex2f) WEAK

TLS_RSA WITH _3DES EDE_CBC_SHA (6xa) WEAK
TLS_ECDHE_RSA WITH_AES 256 GCM_SHA384 (0xc038) ECDH secp384r1 (eq. 7680 bits RSA) FS

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (exc@2f) ECDH secp384ri (eq. 7680 bits RSA) FS

256

128

256

256

128

128

12

256

128

256

256

128

128

12

256

128

18

NYU.edu: Supported devices.

Handshake Simulation

Android 2.3.7 No SNIZ
Android 4.0.4

Android 4.1.1

Android 4.2.2

Android 4.3

Android 4.4.2

Android 5.0.0

Android 6.0

Android 7.0

Baidu Jan 2015
BingPreview Jan 2015
Chrome 49 / XP SP3
Chrome 69 /Win7 R

Firefox 31.3.0 ESR / Win 7

Firefox 47 /Win 7 R
Eirefox 49 / XP SP3
Eirefox 62 /Win 7 R
Googlebot Feb 2018

IE 7/ Vista

RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)
RSA 2048 (SHA256)

RSA 2048 (SHA256)

TLS 1.0

TLS 1.0

TLS 1.0

TLS 1.0

TLS 1.0

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.0

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.2

TLS 1.0

TLS_DHE_RSA_WITH_AES_128 CBC_SHA DH 1024 FS
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DH 1024 FS
TLS_DHE_RSA WITH_AES 256 CBC SHA DH 1024 FS
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DH 1024 FS
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DH 1024 FS
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 DH 1024
TLS_DHE_RSA WITH_AES 128 GCM_SHA256 DH 1024
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 DH 1024
TLS_RSA_WITH_AES_256_GCM_SHA384 No FS
TLS_DHE_RSA WITH_AES 256 CBC SHA DH 1024 FS
TLS_DHE_RSA WITH_AES 256 GCM_SHA384 DH 1024
TLS_RSA_WITH_AES_128_GCM_SHA256 No FS
TLS_RSA_WITH_AES_256_GCM_SHA384 No FS
TLS_DHE_RSA WITH_AES 256 CBC SHA DH 1024 FS
TLS_DHE_RSA WITH_AES 256 CBC SHA DH 1024 FS
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DH 1024 FS
TLS_RSA_WITH_AES_256_CBC_SHA NoFS
TLS_RSA_WITH_AES_256_GCM_SHA384 No FS

TLS_RSA WITH_AES 256 _CBC_SHA NoFS

TLS 1.2 and TLS 1.3: How Protocols Evolve

. }Eg:“fff('f%%'{(?%fi{@"f o)]
ClientHello(nc, TLS1.2, {DHE,RSA}, {AES-GCM,RC4}) Generates x
ClientHell) (G, g*
ServerHello(ns, TLS1.2,DHE, AES-GC) log, - ienthellotn,offerc(G.¢") | log,
< KeyExchange(certS,signSkS (G,g%) Computes: Computes:
KeyExchange(g¥, [certc, 5ign"k5 (Togy)]) KD KD, kO = kdfi (g™, log,) KD kD, kD = kdfi (g, log;)
logy -----—"7++—-——"—F"—"————————————————— -~ log,
loen enchi(Certificate(pkc) | o
Computes: Computes: 10«5’2 _____ enc"‘;f(CertVeri I'y(signS""(hash(fogz)))) _____ 1082
(ms, k) = kdf(g*¥, ncllng) (s, k) = kdf(g*¥, ncling) %3 enck’:(Finished(mack:f'(hash(log3)))) 83
logy ----- T T log,
enc't (Data(my))
enck(Finished(mac (hash(log) !
’ng 77777 e T AT PO re—— A log2 ServerHello(ng,modes[G,g"])
< enc (FlnlShed(mac {haSh{)))) (Continue 1-RTT Exchange)
encf(Data(mp) | [T 7
enck(Da ta(my)) New client session: New server session:
< C =Cwcid v (offeri, modeg, S = SWcid v (offers, modeg,
pkc. pks, psk, pkc. pks. psk,
Conversation: Conversation: koo ks, psk’) ke ks, psk’)
anon < S : my, my anon < S : my, my encke(Data(m,))
* * Appllcatlon Data Stream: Apphcatlon Data Stream:
C(—) S:mg,my,. C LN S g, my,.

— — 20

TLS 1.2 and TLS 1.3: How Protocols Evolve

Supported protocol and cipher suites

Authenticated Key Exchange

ClientHello(nc, TLS1.2, {DHE

M}, {AES-GCM,RC4))

ServerHello(ng, TLS)/Z,DHE,AES—GCI”I)

Reytxchange(cert5,5|gn (G, 87))

KeyExchange(g*,[certc, sign™s (log,)])

Computes

(ms, k)

Computes:
kdf(g™, ne|lng)

enck(Finished(mac (hash(log)

(
enck(Finished(mac"’s{hash{ 5))))

A

enck(Data(mo))
)

enck(Data(m,

A

Conversation:
anon < S : my, my

*

Application data stage

Conversation:
anon < S :mg, my

*

(N
Generates x
ClientHello(nc,offerc[G,g*])
logy -----—mn——7 —————————————————p - log,
Computes: Computes:
K0 k0 kO = kdf. (¢, log,) kO, k9 k0 = kdf,,(¢*, log,)
Tt N e 55 S’ 4 gl hr e 58 S 2’1
K0
logy -~ - enchi (Certi flcakte(pkc)) 77777 log,
enc h(CertVerl I'y(sngns ¢(hash(log,))))
logy ----- 92 5 log
) 3 k T I | 3
084 ----- oy ---- 108y
<(D
L enc't (Data(my)))

ServerHello(ng,modes[G,g"])

New client session:

C =Cwcid v (offeri, modeg,

pkc.pks, psk,
ke, ks, psk’)

(Continue 1-RTT Exchange)

New server session:
8§ = Sweid v (offer, modeg,

pkcipks, psk,
keoks, psk’)

encke(Data(m,))

Appllcatlon Data Stream:

C(—)S Mo, My,

—

Apphcatlon Data Stream:

C <—> S g, ny,..

—

21

TLS 1.3: A Simpler Overview

Client Server
e By employing the primitives introduced in Generate key pair (c, C = <)
. . . . ClientHello Generate key pair (s, S = sQ)
earlier sessions, we obtain all of our security - ciphers supported L » Compute secret = DH(s, O)
- public key C Derive keys = KDF(secret)
guarantees. ServerHello
- ciphers selected
- public key S
Certificate
Verify certificate
Verify signature Signature
Compute secret = DH(c, S) <—————— over ClientHello, ServerHello,
Derive keys = KDF(secref) certificate
Verify MAC using keys
fy MAC using key —
over ClientHello, ServerHello,
certificate, signature

22

Public Key
Infrastructure

Why do certificates matter?

e Certificates authenticate a set of claims that
@ Secure https://www.nyu.edu

a server is making about its authority and
X

ownership over some website. SaDesHRT; FECR pation For:

Your information (for example, passwords or credit

card numbers) is private when it is sent to this site.

Learn more NYU

B Certificate (Valid)

‘ @ Cookies (3 in use)

Site settings }
[¥ ’ | U N

N L Y W

24

Why do certificates matter?

Certificates authenticate a set of claims that
a server is making about its authority and

ownership over some website.
o Long-term public keys (identity keys.)

o Entity operating the website.
But who vouches for these claims?
Certificate authorities.
Public signing keys of certificate authorities

shipped hardcoded into consumer devices.

P8 Certificate X

Show: Version 1 Fields Only

General Details Certification Path

Field

ElSerial number
ElSignature algorithm
ElSignature hash algorithm
Ellssuer

EValid from

ElValid to

ElSubject

ElPublic key

EPublic key parameters

Value
009eb9408c14593f0ad7cacffdbe6fdf5a
sha256RSA

sha256

InCommon RSA Server CA, InCommo...
Tuesday, July 17, 2018 2:00:00 AM
Friday, July 17, 2020 1:59:59 AM
www.nyu.edu, ITS eServices, New Yor...
RSA (2048 Bits)

05 00

25

Certificate Authorities: a complete mess.

Certificate authorities are a scam that

benefits nobody.

e They contribute almost nothing to online N
security, cost a lot of money, are a barrier to
deploying secure websites.

e Ifone of them gets compromised, the entire

Web’s endpoint authentication is put at risk.

26

Certificate Authorities: a complete mess.

NEWS

Microsoft blacklists latest rogue SSL certificates

By Luclan Constantin
-

Microsoft has blacklisted a subordinate CA certificate that was wrongfully

used to issue SSL certificates for several Google websites. The action will
prevent those certificates from being used in Google website spoofing

attacks against Internet Explorer users

Security

Google Chrome's HTTPS ban-hammer
drops on WoSign, StartCom in two
months

Substandard certs, already in partial exile, soon to
be shunned completely

By Thomas Claburn in San Francisco 7 Jul 2017 at 22:27 27

q This Connection is Untrusted

e et ket s et e 12w pl Ay gk 55 ot i s
ot e o
g 1 e gt s Mo e e ety e be it

e s nps e e At e g 2 e S o

‘What Should | Do’

Update Google in two months will conclude its prolonged
excommunication of misbehaving SSL/TLS certificate authorities WoSign
and subsidiary StartCom, a punishment announced last October.

B Derek Kortopeter

Symantec has fallen out of the good graces of the InfoSec community, and the larger companies in

Silicon Valley are taking action. As Bleeping Computer reports, Mozilla ly will release a
beta version in carly September that recognizes Symantee TLS certs as a security risk. When a user

accesses websites with Symantee certificates, they will be met with a message informing that their

connection isn't private. Additionally, Google has set up its September beta release of Chrome 70 Canary

to give a similar warning to its users who land on Symantec TLS encrypted pages

T'he move comes after a July investigation conducted by Google and Mozilla engineers showed that

Symantec did not consistently follow the regulations for TLS issuing. As Bleeping Computer notes, this

set of actions on the part of Google and Mozilla is the final step in fully legitimizing Symantec

certificates, with the first step being Symantec “demoting itself from the position of Root Certificate

Authority to that of a Subordinate Certificate Authority that abides by the rules of a different party

27

Let’s Encrypt: a new hope?

e Free certificates.
e Automated certificate issuance protocol
(ACME) - the first of its kind!

o Formally verified recently.

o Free secure websites for everyone. n Let’s Encrypt

28

Let’s Encrypt Growth

70M Certificates Active

Fully-Qualified Domains Active

Registered Domains Active
60M

50M

40M

30M

Active Count

Methodology Change
20M

10M

Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018

Source: https://letsencrypt.org/stats 29

https://letsencrypt.org/stats/

Certificate Authority Market Share

2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
1 Sep 10ct 1Nov 1Dec 1Jan 1Feb 1Mar 1Apr 1May 1Jun 1 Jul 1 Aug 1Sep 17 Sep

IdenTrust 29.6% 30.5% 31.5% 32.5% 32.8% 33.5% 35.5% 36.9% 38.3% 39.6% 41.0% 44.0% 45.4% 45.9%
Comodo 39.8% 39.4% 38.7% 38.2% 38.0% 37.6% 36.7% 36.2% 35.8% 35.1% 34.0% 32.3% 31.4% 31.0%
DigiCert Group 2.2% 2.2% 2.2% 15.0% 14.8% 14.5% 13.8% 13.2% 12.7% 12.3% 12.1% 11.4% 11.0% 10.8%

GoDaddy Group 7.6% 7.5% 7.5% 7.5% 7.5% 7.5% 7.4% 7.4% 7.3% 7.2% 7.2% 6.9% 69% 6.9%
GlobalSign 4.6% 4.5% 4.5% 4.4% 4.4% 4.3% 42% 3.9% 3.7% 3.5% 3.5% 3.3% 3.1% 3.1%
Certum 0.6% 0.6% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.8% 0.8%

Actalis 0.2% 0.2% 0.3% 0.3% 03% 0.3% 03% 03% 03% 03% 0.3% 03% 04% 0.4%

Entrust 0.4% 0.4% 04% 04% 04% 04% 04% 04% 03% 03% 03% 03% 03% 0.3%

Secom Trust 0.3% 03% 03% 03% 03% 03% 03% 03% 03% 03% 03% 03% 0.3% 0.3%

Let’s Encrypt 0.1% 0.2% 0.2% 0.2% 0.1% 0.2% 0.2% 0.2% 0.1% 0.2% 0.2% 0.2% 0.2% 0.2%

Trustwave 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
WISeKey Group 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
StartCom 0.2% 0.1% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% <0.1% <0.1%

Symantec Group 13.8% 13.4% 13.1%

Source: https://w3techs.com/technologies/history overview/ssl certificate 30

https://w3techs.com/technologies/history_overview/ssl_certificate

Attacks on TLS

Attacks on TLS: SMACK and FREAK

e SMACK: Can’t get past key exchange or
authentication? Just skip the messages!

e FREAK:Inthe 1990s, NSA mandated weak
cipher suites for HTTPS so that foreign and
civilian communications could be

decrypted.

o Thanks to insecure state transition logic, we
can force these cipher suites to be used
evenin 2015.

o Expanded with Logjam.

32

Attacks on TLS: Sloth

e RSA-MD5 couples the public key primitive
RSA with the outdated hash function MD5,
which can now have pre-images obtained
with 239 calculations.

e By obtaining targeted pre-images, client

authentication can be broken.

Many more attacks on TLS exist: Sweet32, Triple Handshake...

Client C'

CH(n.,ex.)

MitM A

SH (n!,, ex’)

SC'(certa)

SKE'(sign(sk 4, hash(n. [n. | 9* — 9| 9] 9)))

Computes ex!, dn’ s.t.

hash(CH | SH' | SC' | SKE' | SCR

by finding a chosen-prefix collision (', s.t.:

hash(log}) = hash(log})

"(Cy | —)) = hash(CH'(n., Ca))

Server §

log}

CH (g eal)
SH(ns, exs)
SC(certs)
SKE(sign(sks. hash(n | n, | p [9| g")))
SCR'(dn’ = Cy | SH | SC | SKE | SCR) SCR(dn)
SHD SHD
oC(eert,) cc(eert,) _ logi
CKE(g” mod (g° — g) = g) CKE(g) .
hash({log{) = hash(log})
[rahlogt) = has(gt) »
CCV(sign(skc, hash(leg?))) CCV(sign(skc, hash(log?))) e
[(ms, ks, k) = kdF(g¥, . | n.)] [(ms, k1. ka) = k(¥ n. | n.)
[CFIN(macgg(ms, hash(log$)))|*:
[SFTN(maceq (ms. hash(log?)))|** Te._logi
Authenticated Connection:
C—=5
I *

33

“SLOTH is also a not-so-subtle reference to
laziness in the protocol design community
with regard to removing legacy
cryptographic constructions.”

— SLOTH paper authors.

CSCI-UA.9480: Introduction to Computer Security - Nadim Kobeissi

34

Next time:
Usability and
Secure
Messaging.

