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Hard Problems

2CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

1.3a



Evaluating computational difficulty.

ǒ Computational hardness can be generally 

evaluated using Big-O notation.

ǒ But we also want to evaluate computational 

complexity:

ƺ P: Polynomial time algorithms.

ƺ NP: Nondeterministic polynomial time 

algorithms.
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Test your knowledge!
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What is the computational complexity of this 

search algorithm?

Ἕ A: O(n)

Ἕ B: O(n 2)

Ἕ C: O(2 n)

let search = (array, x) => {

for ( i = 0; i < array.length ; i ++) {

if (array[ i ] === x) {

return i ;

}

}

return - 1;

}



Test your knowledge!
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P-complete problems are solvable in 
polynomial time: O(nk) .

NP-complete problems are problems that 
%21s7 .12: +2: 72 62/9& ,1 32/<120,!/ 7,0& 
but that we can verify in polynomial time.
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NP-complete problem: traveling salesman.

Find a path that visits every home in a city 

while consuming the least amount of gas.

ǒ Solution not immediately obvious 

(especially for larger cities.)

ǒ Verifying a solution is somewhat more 

obvious.
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NP-complete problem: traveling salesman.

w>17 $2/21< 237,0,=!7,21xm 48!/,7< 2' 3+&52021&6 3523257,21!/ 72 7+& &'',$,&1$<ª/&1(7+ 2' 7+& 3!7+k
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NP-complete problem: knapsack.

Can you find the cheapest way to fill the 

knapsack with 15kg of weights?

ǒ Solution not immediately obvious 

(especially for much larger knapsacks.)

ǒ Solution easily verifiable.
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Tetris can be considered an NP-class problem: 
difficult to solve but with easy to verify 
solutions.
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Did you know?



NP-complete problem: Tetris!

Hard to clear lines, easy to verify a replay of 

someone else playing.

ǒ All NP-complete problems can be reduced 

to one another.

ǒ K2#2%< +!6 3529&1 7+!7 M Æ KMk

ǒ ?87 :&v5& !/0267 685& 7+!7 +!5% 352#/&06 

do exist.
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Link each icon to the correct label.
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P

NP

Hashing x 
to get y.

Getting x 
from y.

Verifying z 
is a valid 
hash of x.



Link each icon to the correct label.
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Diffie -Hellman
and Elliptic-Curve Diffie-Hellman
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Hard problems: RSA.

ǒ Given N = p × q where p and q are large 

prime numbers, can you find p and q?

ǒ If N is a 2048 -bit number, it would have two 

prime factors of ~1000 bits each, making it 

take 290 operations to break.

ǒ This is the root of the RSA public key 

encryption scheme.

ǒ Other public key encryption schemes are 

similarly rooted in different hard problems.
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Hard problems: Diffie -Hellman.

ǒ Given gy = x where you only know g and 

x , can you find y?

ǒ We operate in a group Zp* , the set of all 

positive integers up until a large prime 

number p.

ǒ All operations are modulo p: the group 

loops back on itself.
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Hard problems: Diffie -Hellman.
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ga mod p

gb mod p

Public values:  g, p
Private keys:   a, b
Public  keys:   ga, gb

Shared secret:  g ab mod p

a
ga

b
gb



Hard problems: Diffie -Hellman.

ǒ Computational Diffie -Hellman problem: 

Given ga and gb, can you calculate gab?

ǒ Decisional Diffie-Hellman problem: Given ga, 

gb and some value gc for some random c , 

can you differentiate gab from gc?
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Attacker model for key agreement.

ǒ Eavesdropping: a passive attacker listens on 

the network.

ǒ Man-in-the-middle : an active attacker 

substitutes values on the networks.

ǒ Device compromise:an attacker steals your 

smartphone.
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As discussed last time: protocols.

In protocols , we reason about:

ǒ Principals: Alice, Bob.

ǒ Security goals: confidentiality, authenticity, 

'25:!5% 6&$5&$<l

ǒ Use cases and constraints.

ǒ Attacker model.

ǒ Threat model.
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As discussed last time: protocols.

Protocols are frequently entrusted with:

ǒ Communicating secret data without a 

malicious party being able to read it: 

confidentiality .

ǒ Ensuring that any data Bob receives that 

appears to be from Alice is indeed from 

Alice: authenticity.

ǒ Limiting the damage that can be caused by 

device compromise or theft: post-

compromise security.
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As discussed last time: protocols.

In TLS 1.3 (the latest engine for HTTPS):

ǒ The server authenticates itself to the client 

using signed certificates.

ǒ The client encrypts data to the server using 

ciphers and integrity codes.

ǒ Key agreement uses Diffie-Hellman.
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Elliptic curve Diffie -Hellman.

ǒ Number field sieve algorithm makes solving 

the discrete logarithm in regular Diffie -

Hellman groups (Zp* ) somewhat fast.

ǒ Q+,6 %2&61v7 !33/< :+&1 7+& (5283 ,6 29&5 

an elliptic curve (521 -bit key sizes are 

great.)
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Elliptic curve Diffie -Hellman.
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Elliptic curve Diffie -Hellman.

ǒ Special rules for addition and scalar 

multiplication.

ǒ wP!'& $859&6x 0867 #& $+26&1m 

https://safecurves.cr.yp.to

ǒ Elliptic Curve Discrete Logarithm problem is 

the reduction.

ǒ EC Diffie-Hellman: X25519.

ǒ EC Signatures: Ed25519.
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https://safecurves.cr.yp.to/


Signature Schemes.
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Useful for attesting the integrity and 

authenticity of data to a wide audience 

without prior key agreement or secret 

exchange.

ǒ Usually the slowest primitive.

ǒ Elliptic -curve signature schemes are widely 

used today (RSA is on its way out.)

ǒ Hash-based signatures exist but are slower 

(except if your number of safe signatures is 

bounded.)



What about quantum computers?

ǒ DH, ECDH and RSA are not post-quantum 
safe. Examples of post-quantum 
algorithms:

ƺ Any hash-based signature scheme.

ƺ Code-based schemes.

ƺ Lattice-based schemes.

ǒ Great resources on PQ cryptography:

ƺ Serious Cryptography, Chapter 14.

ƺ https://pqcrypto.org
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Fig. 1: A fully functional, fast 
quantum computer.

https://pqcrypto.org/


Randomness
Following slides based on a slide deck by

J.P. Aumassonand Philipp Jovanovic.
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tO!1%20 180#&56 !5& !#62/87&/< &66&17,!/ 
'25 ! $5<372 /,#5!5<n ,' 7+&<s5& 127 (22% 
&128(+n :& %21s7 &9&1 +!9& 72 (&7 67!57&% 
with encryption or anything else, because it 
all collapses to something trivially 
%&7&50,1,67,$ !1% 7+&5&'25& 35&%,$7!#/&ku
hMartin Boßlet
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Randomness in cryptographic systems.

Why do we need strong randomness?

ǒ Generation of secret keys.

ǒ Secure encryption.

ǒ Key agreement protocols (Signal, TLS, etc.)

ǒ Side-channel defenses.

ǒ And other use cases.
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