
CSCI-UA.9480
Introduction to Computer Security

Session 1.3
Public Key Cryptography
and Randomness
Prof. Nadim Kobeissi

Hard Problems

2CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

1.3a

Evaluating computational difficulty.

ǒ Computational hardness can be generally

evaluated using Big-O notation.

ǒ But we also want to evaluate computational

complexity:

ƺ P: Polynomial time algorithms.

ƺ NP: Nondeterministic polynomial time

algorithms.

3CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Test your knowledge!

4CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

What is the computational complexity of this

search algorithm?

Ἕ A: O(n)

Ἕ B: O(n 2)

Ἕ C: O(2 n)

let search = (array, x) => {

for (i = 0; i < array.length ; i ++) {

if (array[i] === x) {

return i ;

}

}

return - 1;

}

Test your knowledge!

5CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

What is the computational complexity of this

search algorithm?

A: O(n)

Ἕ B: O(n 2)

Ἕ C: O(2 n)

let search = (array, x) => {

for (i = 0; i < array.length ; i ++) {

if (array[i] === x) {

return i ;

}

}

return - 1;

}

P-complete problems are solvable in
polynomial time: O(nk) .

NP-complete problems are problems that
%21s7 .12: +2: 72 62/9& ,1 32/<120,!/ 7,0&
but that we can verify in polynomial time.

6CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

NP-complete problem: traveling salesman.

Find a path that visits every home in a city

while consuming the least amount of gas.

ǒ Solution not immediately obvious

(especially for larger cities.)

ǒ Verifying a solution is somewhat more

obvious.

7CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

NP-complete problem: traveling salesman.

w>17 $2/21< 237,0,=!7,21xm 48!/,7< 2' 3+&52021&6 3523257,21!/ 72 7+& &'',$,&1$<ª/&1(7+ 2' 7+& 3!7+k

8CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

1 2 3 4

NP-complete problem: knapsack.

Can you find the cheapest way to fill the

knapsack with 15kg of weights?

ǒ Solution not immediately obvious

(especially for much larger knapsacks.)

ǒ Solution easily verifiable.

9CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Tetris can be considered an NP-class problem:
difficult to solve but with easy to verify
solutions.

10CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Did you know?

NP-complete problem: Tetris!

Hard to clear lines, easy to verify a replay of

someone else playing.

ǒ All NP-complete problems can be reduced

to one another.

ǒ K2#2%< +!6 3529&1 7+!7 M Æ KMk

ǒ ?87 :&v5& !/0267 685& 7+!7 +!5% 352#/&06

do exist.

11CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Link each icon to the correct label.

12CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

P

NP

Hashing x
to get y.

Getting x
from y.

Verifying z
is a valid
hash of x.

Link each icon to the correct label.

13CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

P

NP

Hashing x
to get y.

Getting x
from y.

Verifying z
is a valid
hash of x.

Diffie -Hellman
and Elliptic-Curve Diffie-Hellman

14CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

1.3b

Hard problems: RSA.

ǒ Given N = p × q where p and q are large

prime numbers, can you find p and q?

ǒ If N is a 2048 -bit number, it would have two

prime factors of ~1000 bits each, making it

take 290 operations to break.

ǒ This is the root of the RSA public key

encryption scheme.

ǒ Other public key encryption schemes are

similarly rooted in different hard problems.

15CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Hard problems: Diffie -Hellman.

ǒ Given gy = x where you only know g and

x , can you find y?

ǒ We operate in a group Zp* , the set of all

positive integers up until a large prime

number p.

ǒ All operations are modulo p: the group

loops back on itself.

16CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Hard problems: Diffie -Hellman.

17CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

ga mod p

gb mod p

Public values: g, p
Private keys: a, b
Public keys: ga, gb

Shared secret: g ab mod p

a
ga

b
gb

Hard problems: Diffie -Hellman.

ǒ Computational Diffie -Hellman problem:

Given ga and gb, can you calculate gab?

ǒ Decisional Diffie-Hellman problem: Given ga,

gb and some value gc for some random c ,

can you differentiate gab from gc?

18CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Attacker model for key agreement.

ǒ Eavesdropping: a passive attacker listens on

the network.

ǒ Man-in-the-middle : an active attacker

substitutes values on the networks.

ǒ Device compromise:an attacker steals your

smartphone.

19CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

As discussed last time: protocols.

In protocols , we reason about:

ǒ Principals: Alice, Bob.

ǒ Security goals: confidentiality, authenticity,

'25:!5% 6&$5&$<l

ǒ Use cases and constraints.

ǒ Attacker model.

ǒ Threat model.

20CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

As discussed last time: protocols.

Protocols are frequently entrusted with:

ǒ Communicating secret data without a

malicious party being able to read it:

confidentiality .

ǒ Ensuring that any data Bob receives that

appears to be from Alice is indeed from

Alice: authenticity.

ǒ Limiting the damage that can be caused by

device compromise or theft: post-

compromise security.

21CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

As discussed last time: protocols.

In TLS 1.3 (the latest engine for HTTPS):

ǒ The server authenticates itself to the client

using signed certificates.

ǒ The client encrypts data to the server using

ciphers and integrity codes.

ǒ Key agreement uses Diffie-Hellman.

22CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Elliptic curve Diffie -Hellman.

ǒ Number field sieve algorithm makes solving

the discrete logarithm in regular Diffie -

Hellman groups (Zp*) somewhat fast.

ǒ Q+,6 %2&61v7 !33/< :+&1 7+& (5283 ,6 29&5

an elliptic curve (521 -bit key sizes are

great.)

23CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Elliptic curve Diffie -Hellman.

24CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Elliptic curve Diffie -Hellman.

ǒ Special rules for addition and scalar

multiplication.

ǒ wP!'& $859&6x 0867 #& $+26&1m

https://safecurves.cr.yp.to

ǒ Elliptic Curve Discrete Logarithm problem is

the reduction.

ǒ EC Diffie-Hellman: X25519.

ǒ EC Signatures: Ed25519.

25CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

https://safecurves.cr.yp.to/

Signature Schemes.

26CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Useful for attesting the integrity and

authenticity of data to a wide audience

without prior key agreement or secret

exchange.

ǒ Usually the slowest primitive.

ǒ Elliptic -curve signature schemes are widely

used today (RSA is on its way out.)

ǒ Hash-based signatures exist but are slower

(except if your number of safe signatures is

bounded.)

What about quantum computers?

ǒ DH, ECDH and RSA are not post-quantum
safe. Examples of post-quantum
algorithms:

ƺ Any hash-based signature scheme.

ƺ Code-based schemes.

ƺ Lattice-based schemes.

ǒ Great resources on PQ cryptography:

ƺ Serious Cryptography, Chapter 14.

ƺ https://pqcrypto.org

27CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Fig. 1: A fully functional, fast
quantum computer.

https://pqcrypto.org/

Randomness
Following slides based on a slide deck by

J.P. Aumassonand Philipp Jovanovic.

28CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

1.3c

tO!1%20 180#&56 !5& !#62/87&/< &66&17,!/
'25 ! $5<372 /,#5!5<n ,' 7+&<s5& 127 (22%
&128(+n :& %21s7 &9&1 +!9& 72 (&7 67!57&%
with encryption or anything else, because it
all collapses to something trivially
%&7&50,1,67,$!1% 7+&5&'25& 35&%,$7!#/&ku
hMartin Boßlet

29CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

Randomness in cryptographic systems.

Why do we need strong randomness?

ǒ Generation of secret keys.

ǒ Secure encryption.

ǒ Key agreement protocols (Signal, TLS, etc.)

ǒ Side-channel defenses.

ǒ And other use cases.

30CSCI- UA.9480: Introduction to Computer Security hNadim Kobeissi

