
CSCI-UA.9480
Introduction to Computer Security

Session 1.3
Public Key Cryptography
and Randomness
Prof. Nadim Kobeissi



Hard Problems

2CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.3a



Evaluating computational difficulty.

● Computational hardness can be generally 

evaluated using Big-O notation.

● But we also want to evaluate computational 

complexity:

○ P: Polynomial time algorithms.

○ NP: Nondeterministic polynomial time 

algorithms.

3CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Test your knowledge!

4CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

What is the computational complexity of this 

search algorithm?

☐ A: O(n)

☐ B: O(n2)

☐ C: O(2n)

let search = (array, x) => {

for (i = 0; i < array.length; i++) {

if (array[i] === x) {

return i;

}

}

return -1;

}



Test your knowledge!

5CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

What is the computational complexity of this 

search algorithm?

🗹 A: O(n)

☐ B: O(n2)

☐ C: O(2n)

let search = (array, x) => {

for (i = 0; i < array.length; i++) {

if (array[i] === x) {

return i;

}

}

return -1;

}



P-complete problems are solvable in 
polynomial time: O(nk).

NP-complete problems are problems that 
don’t know how to solve in polynomial time 
but that we can verify in polynomial time.

6CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



NP-complete problem: traveling salesman.

Find a path that visits every home in a city 

while consuming the least amount of gas.

● Solution not immediately obvious 

(especially for larger cities.)

● Verifying a solution is somewhat more 

obvious.

7CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



NP-complete problem: traveling salesman.

“Ant colony optimization”: quality of pheromones proportional to the efficiency/length of the path.

8CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

    



NP-complete problem: knapsack.

Can you find the cheapest way to fill the 

knapsack with 15kg of weights?

● Solution not immediately obvious 

(especially for much larger knapsacks.)

● Solution easily verifiable.

9CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Tetris can be considered an NP-class problem: 
difficult to solve but with easy to verify 
solutions.

10CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Did you know?



NP-complete problem: Tetris!

Hard to clear lines, easy to verify a replay of 

someone else playing.

● All NP-complete problems can be reduced 

to one another.

● Nobody has proven that P ≠ NP.

● But we’re almost sure that hard problems 

do exist.

11CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Link each icon to the correct label.

12CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

P

NP

Hashing x 
to get y.

Getting x 
from y.

Verifying z 
is a valid 
hash of x.



Link each icon to the correct label.

13CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

P

NP

Hashing x 
to get y.

Getting x 
from y.

Verifying z 
is a valid 
hash of x.



Diffie-Hellman
and Elliptic-Curve Diffie-Hellman

14CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.3b



Hard problems: RSA.

● Given N = p × q where p and q are large 

prime numbers, can you find p and q?

● If N is a 2048-bit number, it would have two 

prime factors of ~1000 bits each, making it 

take 290 operations to break.

● This is the root of the RSA public key 

encryption scheme.

● Other public key encryption schemes are 

similarly rooted in different hard problems.

15CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Hard problems: Diffie-Hellman.

● Given gy = x where you only know g and 

x, can you find y?

● We operate in a group Zp*, the set of all 

positive integers up until a large prime 

number p.

● All operations are modulo p: the group 

loops back on itself.

16CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Hard problems: Diffie-Hellman.

17CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

ga mod p

gb mod p

Public values:  g, p
Private keys:   a, b
Public  keys:   ga, gb

Shared secret:  gab mod p

a
ga

b
gb



Hard problems: Diffie-Hellman.

● Computational Diffie-Hellman problem: 

Given ga and gb, can you calculate gab?

● Decisional Diffie-Hellman problem: Given ga, 

gb and some value gc for some random c, 

can you differentiate gab from gc?

18CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Attacker model for key agreement.

● Eavesdropping: a passive attacker listens on 

the network.

● Man-in-the-middle: an active attacker 

substitutes values on the networks.

● Device compromise: an attacker steals your 

smartphone.

19CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



As discussed last time: protocols.

In protocols, we reason about:

● Principals: Alice, Bob.

● Security goals: confidentiality, authenticity, 

forward secrecy…

● Use cases and constraints.

● Attacker model.

● Threat model.

20CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



As discussed last time: protocols.

Protocols are frequently entrusted with:

● Communicating secret data without a 

malicious party being able to read it: 

confidentiality.

● Ensuring that any data Bob receives that 

appears to be from Alice is indeed from 

Alice: authenticity.

● Limiting the damage that can be caused by 

device compromise or theft: post-

compromise security.

21CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



As discussed last time: protocols.

In TLS 1.3 (the latest engine for HTTPS):

● The server authenticates itself to the client 

using signed certificates.

● The client encrypts data to the server using 

ciphers and integrity codes.

● Key agreement uses Diffie-Hellman.

22CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Elliptic curve Diffie-Hellman.

● Number field sieve algorithm makes solving 

the discrete logarithm in regular Diffie-

Hellman groups (Zp*) somewhat fast.

● This doesn’t apply when the group is over 

an elliptic curve (521-bit key sizes are 

great.)

23CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Elliptic curve Diffie-Hellman.

24CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Elliptic curve Diffie-Hellman.

● Special rules for addition and scalar 

multiplication.

● “Safe curves” must be chosen: 

https://safecurves.cr.yp.to

● Elliptic Curve Discrete Logarithm problem is 

the reduction.

● EC Diffie-Hellman: X25519.

● EC Signatures: Ed25519.

25CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

https://safecurves.cr.yp.to/


Signature Schemes.

26CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Useful for attesting the integrity and 

authenticity of data to a wide audience 

without prior key agreement or secret 

exchange.

● Usually the slowest primitive.

● Elliptic-curve signature schemes are widely 

used today (RSA is on its way out.)

● Hash-based signatures exist but are slower 

(except if your number of safe signatures is 

bounded.)



What about quantum computers?

● DH, ECDH and RSA are not post-quantum 
safe. Examples of post-quantum 
algorithms:

○ Any hash-based signature scheme.

○ Code-based schemes.

○ Lattice-based schemes.

● Great resources on PQ cryptography:

○ Serious Cryptography, Chapter 14.

○ https://pqcrypto.org

27CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Fig. 1: A fully functional, fast 
quantum computer.

https://pqcrypto.org/


Randomness
Following slides based on a slide deck by

J.P. Aumasson and Philipp Jovanovic.

28CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.3c



“Random numbers are absolutely essential 
for a crypto library, if they’re not good 
enough, we don’t even have to get started 
with encryption or anything else, because it 
all collapses to something trivially 
deterministic and therefore predictable.”
– Martin Boßlet

29CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Randomness in cryptographic systems.

Why do we need strong randomness?

● Generation of secret keys.

● Secure encryption.

● Key agreement protocols (Signal, TLS, etc.)

● Side-channel defenses.

● And other use cases.

30CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Test your knowledge!

31CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Have these numbers been randomly generated?

01001101110101101010



Test your knowledge!

32CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Have these numbers been randomly generated?

01001101110101101010

Probability = 1/220



Test your knowledge!

33CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Have these numbers been randomly generated?

01001101110101101010

Probability = 1/220
2 = number of possible bits (0, 1)

20 = number of bits in the bitstring



Test your knowledge!

34CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Have these numbers been randomly generated?

00000000000000000000



Test your knowledge!

35CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Have these numbers been randomly generated?

00000000000000000000

Probability = 1/220
2 = number of possible bits (0, 1)

20 = number of bits in the bitstring



“There is no such thing as a random number 
– there are only methods to produce random 
numbers.”
– John von Neumann

36CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Randomness in cryptographic systems.

RNGs produce random bits.

● Non-deterministically.

● Thanks to external analog sources 

(waterfall, quantum measurements…)

DRBGs produce pseudorandom bits.

● Deterministically.

● From a seed (hopefully taken from an RNG 

or similar.)

37CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Randomness in cryptographic systems.

RNGs produce random bits.

● Non-deterministically.

● Thanks to external analog sources 

(waterfall, quantum measurements…)

DRBGs produce pseudorandom bits.

● Deterministically.

● From a seed (hopefully taken from an RNG 

or similar.)

38CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

PRNGs produce pseudorandom bits.

● Non-deterministically.

● Uses seeds from an RNG to maintain 

entropy pools.



Cloudflare uses a wall of lava lamps!

39CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

“LavaRand”:

https://blog.c
loudflare.com
/lavarand-in-
production-
the-nitty-
gritty-
technical-
details/

https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/


Entropy: measuring uncertainty.

● Symmetric keys: entropy of a key = key size 

in bits.

● Public keys: as much entropy as log2

(number of potential choices).

● If your keys need entropy of n bits, you 

should use a PRNG with entropy at least n

to generate these keys.

40CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



The Linux Kernel PRNGs.

● /dev/random: device file that outputs 

random bytes (blocking)

● /dev/urandom: device file that outputs 

random bytes (non-blocking)

41CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Image courtesy of Cloudflare.



Windows PRNG.

● BCryptGenRandom(): Windows’ 

PRNG.

● However, using a safe PRNG function is 

not an immediate solution, as attested 

by this bug in QtPass reported by Jason 

Donenfeld in 2017.

42CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

“The problem here is 
that modulo will not 
uniformly distribute 
that set. The proper way 
to do things is to just 
throw away values that 
are out of bounds.”



“Blocking” vs. “Non-blocking”.

/dev/random is blocking.

● Will freeze and stop issuing bytes (i.e. block) 

when entropy pool is too low.

● Entropy decreases on non-activity.

43CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

/dev/urandom is non-blocking.

● Never freezes even when entropy pool is too 

low.

● Using /dev/urandom is perfectly fine! No 

need to use /dev/random.



What if I don’t have access to a PRNG?

If you really are stuck with no alternative, 

then the following (imperfect) sources can be 

used:

● Collect entropy from the most sources 

(environment, mouse movement, time, CPU 

temperature, system logs…)

● Hash the data collected with a secure hash 

function.

● Use the resulting hash to seed a strong 

PRNG.

44CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Example bug: Cryptocat (2013).

● This code is supposed to generate a string 

of 16 digits between 0 and 9.

● Can you identify the error?

45CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Example bug: Cryptocat (2013).

● This code is supposed to generate a string 

of 16 digits between 0 and 9.

● Can you identify the error?

● 25 values give a 1, 25 values give a 2…

● 26 values give a 0!

46CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

https://nakedsecurity.sophos.com/2013/07
/09/anatomy-of-a-pseudorandom-number-

generator-visualising-cryptocats-buggy-
prng/



Example bug: Cryptocat (2013).

● This code is supposed to generate a string 

of 16 digits between 0 and 9.

● Can you identify the error?

● 25 values give a 1, 25 values give a 2…

● 26 values give a 0!

16-digit string has slightly less entropy than 53 

bits.

47CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

https://nakedsecurity.sophos.com/2013/07
/09/anatomy-of-a-pseudorandom-number-

generator-visualising-cryptocats-buggy-
prng/



Example bug: Cryptocat (2013).

● This code is supposed to generate a string 

of 16 digits between 0 and 9.

● Can you identify the error?

● 25 values give a 1, 25 values give a 2…

● 26 values give a 0!

16-digit string has slightly less entropy than 53 

bits.

Separate bug: 253 isn’t enough for secret keys 

anyway!

48CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

https://nakedsecurity.sophos.com/2013/07
/09/anatomy-of-a-pseudorandom-number-

generator-visualising-cryptocats-buggy-
prng/



Next time:
Transport Layer 

Security.

49CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.4


