
CSCI-UA.9480
Introduction to Computer Security

Session 1.1
One-Way Functions and Hash
Functions
Prof. Nadim Kobeissi

Why Hash
Functions?

Describing the importance of “the
cryptographer’s Swiss Army

knife.”

2CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.1a

As discussed last time: protocols.

In protocols, we reason about:

● Principals: Alice, Bob.

● Security goals: confidentiality, authenticity,

forward secrecy…

● Use cases and constraints.

● Attacker model.

● Threat model.

3CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Protocols need to do things.

Protocols are frequently entrusted with:

● Communicating secret data without a

malicious party being able to read it:

confidentiality.

● Ensuring that any data Bob receives that

appears to be from Alice is indeed from

Alice: authenticity.

● Limiting the damage that can be caused by

device compromise or theft: post-

compromise security.

4CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Protocols need to do things.

In TLS 1.3 (the latest engine for HTTPS):

● The server authenticates itself to the client

using signed certificates.

● The client encrypts data to the server using

ciphers and integrity codes.

● And other things we’ll explore later. But for

now…

5CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

All of these crucial protocols rely on
cryptographic primitives, which are intricate
algorithms that are frequently built from
“mathematically hard” foundations or from
designs shown to be resistant to
cryptanalysis.

6CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

“Mathematically hard”: Breaking the security
of this cryptographic primitive would be
equivalent to solving some math problem
that is long-thought to be impossible to solve
practically, such as obtaining the discrete
logarithm over large prime numbers.

7CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

“Resistant to cryptanalysis”: After extensive
scrutiny by cryptanalysts, no attack was
found to violate the security claims of the
design (such as confidentiality,
pseudorandomness, etc.)

8CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Protocols need building blocks

Asymmetric primitives.

● Public key agreement algorithms: client and

server can agree on a secret encryption key

over a public channel (wow!)

● Signature algorithms: an authority can sign a

certificate proving that the server is indeed

who it says it is.

Symmetric primitives.

● Secure hash functions: the client and the

server can generate integrity-preserving

codes for encrypted messages.

● Encryption schemes: confidential data can

be encrypted and exchanged.

9CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

What are Hash
Functions?

And how are they useful?

10CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.1b

OK, so what’s a hash function?

Simple!

● A hash function H(x) takes some input x

which can be of any length…

● And produces some value y which is of a

fixed length (usually 128, 256 , 384 or 512

bits.)

H(x) → y

11CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

OK, so what’s a secure hash function?

A hash function, but…

● Anyone with x can calculate y very easily…

● Going from y back to x is impossible.

● y reveals no information about x

(pseudorandom, uniformly chosen.)

● Finding an x’ that also maps to y is

extremely improbable.

12CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

BLAKE2s(“tomato”) =
5cc655abb6feebac1ba4c24d4b06461a

BLAKE2s(“tomate”) =
75e6179a12dd9303ecdc877aeb6d50ab

13CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Test your knowledge!

14CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Which of the following is an insecure hash

function?

☐ A: MD5.

☐ B: BLAKE2.

☐ C: SHA2.

Test your knowledge!

15CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Which of the following is an insecure hash

function?

🗹 A: MD5.

☐ B: BLAKE2.

☐ C: SHA2.

Which hash functions are safe to use?

16CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

● Collision resistance.

Properties of a secure hash function.

17CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

● Collision resistance.

● Preimage resistance.

Properties of a secure hash function.

18CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

● Collision resistance.

● Preimage resistance.

● Second preimage resistance.

Properties of a secure hash function.

19CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Xiaoyun Wang, the Chinese researcher who
first broke MD5, had her results initially
rejected at USENIX because the translation of
the book she was using got the endianness
wrong.

20CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Did you know?

How are hash functions useful?

Let’s say you want to send a secret message.

● You encrypt a plaintext and get a ciphertext.

● You give your ciphertext to your courier,

who is also the Devil (oh, no!)

● The courier switches your ciphertext for

another one! What now?!

21CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

A wild attacker appears!

22CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can we use hash functions to prevent the

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

A wild attacker appears!

23CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can we use hash functions to prevent the

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

So unfair! What can we do?!

A wild attacker appears!

24CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can we use hash functions to prevent the

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

☐ C: Send H(key||ciphertext) with encrypted message.

A wild attacker appears!

25CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can we use hash functions to prevent the

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

☐ C: Send H(key||ciphertext) with encrypted message.

Oh no!!!

A wild attacker appears!

26CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can we use hash functions to prevent the

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

🗹 D: Send HMAC(key, ciphertext) with encrypted message.

☐ C: Send H(key||ciphertext) with encrypted message.

What we created is a “hash-based message

authentication code (HMAC.)

● Options A and B can be created by the Devil.

● Option C is somewhat sensible, but

vulnerable to collisions.

● HMACs are a construction that avoid this

problem (opad and ipad are constants, key

size is set):

Hash functions can preserve integrity.

27CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

But what if you send the same message

twice?

● Same ciphertext. Same HMAC. That’s a

distinguisher.

● May also allow for replay attacks.

● That’s why we use nonces (numbers used

once.)

Hash functions can preserve integrity.

28CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Another big use case: login authentication.

● Storing user passwords on a single server is

a bad idea: what if the server gets

compromised?

● Storing a hash of the password: better idea.

● Storing a salted hash: even better.

Hash functions: not just for message integrity.

29CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Salting and password hashing?

● A salt is a nonce that helps us avoid getting

the same hash for the same passwords, and

makes hashes less susceptible to lookup-

table (“rainbow table”)-based attacks.

● A “password hashing” function is an

intentionally very slow and expensive hash

function that makes brute forcing more

expensive. Examples: scrypt, Argon2.

Hash functions: not just for message integrity.

30CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Many other use cases:

● Quickly scanning for file integrity: generate

a hash and match it later.

● Identifying malware samples.

● Proof-of-work.

● Even database sharding!

You can even build encryption schemes and

digital signature algorithms out of a hash

function!

Hash functions: not just for message integrity.

31CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Git alone uses hash functions in so many different ways:

Hash functions: not just for message integrity.

32CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Salting and password hashing?

● PBKDF2: Essentially just performs a salted

HMAC a certain number of iterations.

10,000+ recommended.

● Bcrypt: CPU intensive like PBKDF2, but also

RAM intensive.

● Scrypt: “Maximally memory hard”; can you

think of which attack this can help prevent?

Password hashing: PBKDF, bcrypt and scrypt

33CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

Next time:
Symmetric Key

Encryption
AES and more.

34CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

1.2

