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Why Hash 
Functions?

Describing the importance of “the 
cryptographer’s Swiss Army 

knife.”
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As discussed last time: protocols.

In protocols, we reason about:

● Principals: Alice, Bob.

● Security goals: confidentiality, authenticity, 

forward secrecy…

● Use cases and constraints.

● Attacker model.

● Threat model.
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Protocols need to do things.

Protocols are frequently entrusted with:

● Communicating secret data without a 

malicious party being able to read it: 

confidentiality.

● Ensuring that any data Bob receives that 

appears to be from Alice is indeed from 

Alice: authenticity.

● Limiting the damage that can be caused by 

device compromise or theft: post-

compromise security.
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Protocols need to do things.

In TLS 1.3 (the latest engine for HTTPS):

● The server authenticates itself to the client 

using signed certificates.

● The client encrypts data to the server using 

ciphers and integrity codes.

● And other things we’ll explore later. But for 

now…
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All of these crucial protocols rely on 
cryptographic primitives, which are intricate 
algorithms that are frequently built from 
“mathematically hard” foundations or from 
designs shown to be resistant to 
cryptanalysis.
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“Mathematically hard”: Breaking the security 
of this cryptographic primitive would be 
equivalent to solving some math problem 
that is long-thought to be impossible to solve 
practically, such as obtaining the discrete 
logarithm over large prime numbers.
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“Resistant to cryptanalysis”: After extensive 
scrutiny by cryptanalysts, no attack was 
found to violate the security claims of the 
design (such as confidentiality, 
pseudorandomness, etc.)

8CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi



Protocols need building blocks

Asymmetric primitives.

● Public key agreement algorithms: client and 

server can agree on a secret encryption key 

over a public channel (wow!)

● Signature algorithms: an authority can sign a 

certificate proving that the server is indeed 

who it says it is.

Symmetric primitives.

● Secure hash functions: the client and the 

server can generate integrity-preserving 

codes for encrypted messages.

● Encryption schemes: confidential data can 

be encrypted and exchanged.
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What are Hash 
Functions?

And how are they useful?
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OK, so what’s a hash function?

Simple!

● A hash function H(x) takes some input x 

which can be of any length…

● And produces some value y which is of a 

fixed length (usually 128, 256 , 384 or 512 

bits.)

H(x) → y
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OK, so what’s a secure hash function?

A hash function, but…

● Anyone with x can calculate y very easily…

● Going from y back to x is impossible.

● y reveals no information about x

(pseudorandom, uniformly chosen.)

● Finding an x’ that also maps to y is 

extremely improbable.
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BLAKE2s(“tomato”) = 
5cc655abb6feebac1ba4c24d4b06461a

BLAKE2s(“tomate”) = 
75e6179a12dd9303ecdc877aeb6d50ab
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Test your knowledge!
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Which of the following is an insecure hash 

function?

☐ A: MD5.

☐ B: BLAKE2.

☐ C: SHA2.



Test your knowledge!
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Which of the following is an insecure hash 

function?

🗹 A: MD5.

☐ B: BLAKE2.

☐ C: SHA2.



Which hash functions are safe to use?
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● Collision resistance.

Properties of a secure hash function.
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● Collision resistance.

● Preimage resistance.

Properties of a secure hash function.
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● Collision resistance.

● Preimage resistance.

● Second preimage resistance.

Properties of a secure hash function.
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Xiaoyun Wang, the Chinese researcher who 
first broke MD5, had her results initially 
rejected at USENIX because the translation of 
the book she was using got the endianness 
wrong.
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How are hash functions useful?

Let’s say you want to send a secret message.

● You encrypt a plaintext and get a ciphertext.

● You give your ciphertext to your courier, 

who is also the Devil (oh, no!)

● The courier switches your ciphertext for 

another one! What now?!
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A wild attacker appears!

22CSCI-UA.9480: Introduction to Computer Security – Nadim Kobeissi

How can we use hash functions to prevent the 

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.



A wild attacker appears!
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How can we use hash functions to prevent the 

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

So unfair! What can we do?!



A wild attacker appears!
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How can we use hash functions to prevent the 

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

☐ C: Send H(key||ciphertext) with encrypted message.



A wild attacker appears!
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How can we use hash functions to prevent the 

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

☐ C: Send H(key||ciphertext) with encrypted message.

Oh no!!!



A wild attacker appears!
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How can we use hash functions to prevent the 

Devil from tampering with our plaintext?

☐ A: Send H(plaintext) along with the encrypted message.

☐ B: Send H(ciphertext) along with the encrypted message.

🗹 D: Send HMAC(key, ciphertext) with encrypted message.

☐ C: Send H(key||ciphertext) with encrypted message.



What we created is a “hash-based message 

authentication code (HMAC.)

● Options A and B can be created by the Devil.

● Option C is somewhat sensible, but 

vulnerable to collisions.

● HMACs are a construction that avoid this 

problem (opad and ipad are constants, key 

size is set):

Hash functions can preserve integrity.
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But what if you send the same message 

twice?

● Same ciphertext. Same HMAC. That’s a 

distinguisher.

● May also allow for replay attacks.

● That’s why we use nonces (numbers used 

once.)

Hash functions can preserve integrity.
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Another big use case: login authentication.

● Storing user passwords on a single server is 

a bad idea: what if the server gets 

compromised?

● Storing a hash of the password: better idea.

● Storing a salted hash: even better.

Hash functions: not just for message integrity.
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Salting and password hashing?

● A salt is a nonce that helps us avoid getting 

the same hash for the same passwords, and 

makes hashes less susceptible to lookup-

table (“rainbow table”)-based attacks.

● A “password hashing” function is an 

intentionally very slow and expensive hash 

function that makes brute forcing more 

expensive. Examples: scrypt, Argon2.

Hash functions: not just for message integrity.
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Many other use cases:

● Quickly scanning for file integrity: generate 

a hash and match it later.

● Identifying malware samples.

● Proof-of-work.

● Even database sharding!

You can even build encryption schemes and 

digital signature algorithms out of a hash 

function!

Hash functions: not just for message integrity.
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Git alone uses hash functions in so many different ways:

Hash functions: not just for message integrity.
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Salting and password hashing?

● PBKDF2: Essentially just performs a salted 

HMAC a certain number of iterations. 

10,000+ recommended.

● Bcrypt: CPU intensive like PBKDF2, but also 

RAM intensive.

● Scrypt: “Maximally memory hard”; can you 

think of which attack this can help prevent?

Password hashing: PBKDF, bcrypt and scrypt
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Next time:
Symmetric Key 

Encryption
AES and more.
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