

SOFTWARE SECURITY

KNOWLEDGE AREA

Issue 1.0

AUTHOR: Frank Piessens – KU Leuven

EDITOR: Awais Rashid – University of Bristol

REVIEWERS:

Eric Bodden – Paderborn University

Rod Chapman – Altran UK

Michael Hicks – University of Maryland

Jacques Klein – University of Luxembourg

Andrei Sabelfeld – Chalmers University of Technology

© Crown Copyright, The National Cyber Security Centre 2018. This information is licensed under the

Open Government Licence v3.0. To view this licence, visit

http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include the

following attribution: CyBOK Software Security Knowledge Area Issue 1.0 © Crown Copyright, The

National Cyber Security Centre 2018, licensed under the Open Government Licence

http://www.nationalarchives.gov.uk/doc/open-government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake. The

project would like organisations using, or intending to use, CyBOK for the purposes of education,

training, course development, professional development etc. to contact it at contact@cybok.org to

let the project know how they are using CyBOK.

Issue 1.0 is a stable public release of the Software Security Knowledge Area. However, it should be

noted that a fully-collated CyBOK document which includes all of the Knowledge Areas is anticipated

to be released by the end of July 2019. This will likely include updated page layout and formatting of

the individual Knowledge Areas.

Software Security

Frank Piessens

June 2018

INTRODUCTION

The purpose of this Software Security chapter is to provide a structured overview of known cate-
gories of software implementation vulnerabilities, and of techniques that can be used to prevent or
detect such vulnerabilities, or to mitigate their exploitation. This overview is intended to be useful to
academic staff for course and curricula design in the area of software security, as well as to industry
professionals for the verification of skills and the design of job descriptions in this area.

Let us start by defining some terms and concepts, and by defining the scope of this chapter. A first
key issue is what it means for software to be secure? One possible definition is that a software system
is secure if it satisfies a specified or implied security objective. This security objective specifies con-
fidentiality, integrity and availability requirements1 for the system’s data and functionality. Consider,
for instance, a social networking service. The security objective of such a system could include the
following requirements:

• Pictures posted by a user can only be seen by that user’s friends (confidentiality)

• A user can like any given post at most once (integrity)

• The service is operational more than 99.9% of the time on average (availability)

Different security requirements can be at odds with each other, for instance, locking down a system
on the appearance of an attack is good for confidentiality and integrity of the system, but bad for
availability.

A security failure is a scenario where the software system does not achieve its security objective, and
a vulnerability is the underlying cause of such a failure. The determination of an underlying cause is
usually not absolute: there are no objective criteria to determine what vulnerability is responsible for
a given security failure or where it is located in the code. One might say that the vulnerability is in the
part of the code that has to be fixed to avoid this specific security failure, but fixes can be required in
multiple places, and often multiple mitigation strategies are possible where each mitigation strategy
requires a different fix or set of fixes.

The definitions of “security” and “vulnerability” above assume the existence of a security objective. In
practice however, most software systems do not have precise explicit security objectives, and even
if they do, these objectives are not absolute and have to be traded off against other objectives such
as performance or usability of the software system. Hence, software security is often about avoiding
known classes of bugs that enable specific attack techniques. There are well-understood classes of
software implementation bugs that, when triggered by an attacker, can lead to a substantial disruption
in the behaviour of the software, and are thus likely to break whatever security objective the software

1Other common information security requirements like non-repudiation or data authentication can be seen as instances
or refinements of integrity from a software perspective. But from other perspectives, for instance from a legal perspective,
the semantics of these requirements can be more involved.

might have. These bugs are called implementation vulnerabilities even if they are relatively indepen-
dent from application- or domain-specific security objectives like the example objectives above.

This document, the Software Security KA, covers such implementation vulnerabilities, as well as
countermeasures for them. Many other aspects are relevant for the security of software based sys-
tems, including human factors, physical security, secure deployment and procedural aspects, but they
are not covered in this chapter. The impact of security on the various phases of the software lifecycle
is discussed in the Secure Software Lifecycle KA. Security issues specific to software running on the
web or mobile platforms are discussed in the Web and Mobile Security KA.

The remainder of this chapter is structured as follows. Topic 1 (Categories) discusses widely relevant
categories of implementation vulnerabilities, but without the ambition of describing a complete taxon-
omy. Instead, the topic discusses how categories of vulnerabilities can often be defined as violations
of a partial specification of the software system, and it is unlikely that a useful complete taxonomy of
such partial specifications would exist. The discussion of countermeasures for implementation vul-
nerabilities is structured in terms of where in the lifecycle of the software system they are applicable.
Topic 2 (Prevention) discusses how programming language and Application Programming Interface
(API) design can prevent vulnerabilities from being introduced during development in software pro-
grammed in that language and using that API. In addition, defensive coding practices can contribute
to the prevention of vulnerabilities. Topic 3 (Detection) covers techniques to detect vulnerabilities in
existing source code, for instance, during development and testing. Topic 4 (Mitigation) discusses
how the impact of remaining vulnerabilities can be mitigated at runtime. It is important to note, how-
ever, that some countermeasure techniques could in principle be applied in all three phases, so this
is not an orthogonal classification. For instance, a specific dynamic check (say, an array bounds
check) could be mandated by the language specification (Prevention, the countermeasure is built in
by the language designer), could be used as a testing oracle (Detection, the countermeasure is used
by the software tester) or could be inlined in the program to block attacks at run-time (Mitigation, the
countermeasure is applied on deployment).

CONTENT

1 Categories of Vulnerabilities

[1][2, c4,c5,c6,c7,c10,c11][3, c6,c9] [4, c17][5, c5,c9,c11,c13,c17]

As discussed in the Introduction, we use the term implementation vulnerability (sometimes also called
a security bug) both for bugs that make it possible for an attacker to violate a security objective, as
well as for classes of bugs that enable specific attack techniques.

Implementation vulnerabilities play an important role in cybersecurity and come in many forms. The
Common Vulnerabilities and Exposures (CVE) is a publicly available list of entries in a standardised
form describing vulnerabilities in widely-used software components, and it lists close to a hundred
thousand such vulnerabilities at the time of writing. Implementation vulnerabilities are often caused
by insecure programming practices and influenced by the programming language or APIs used by
the developer. This first topic covers important categories of implementation vulnerabilities that can
be attributed to such insecure programming practices.

Existing classifications of vulnerabilities, such as the Common Weakness Enumeration (CWE), a
community-developed list of vulnerability categories, are useful as a baseline for vulnerability identifi-
cation, mitigation and prevention, but none of the existing classifications have succeeded in coming
up with a complete taxonomy. Hence, the categories discussed in this first topic should be seen as
examples of important classes of vulnerabilities, and not as an exhaustive list. They were selected
with the intention to cover the most common implementation vulnerabilities, but this selection is at
least to some extent subjective.

4

Specific categories of implementation vulnerabilities can often be described as violations of a (formal
or informal) specification of some sub-component of the software system. Such a specification takes
the form of a contract that makes explicit what the sub-component expects of, and provides to its
clients. On violation of such a contract, the software system enters an error-state, and the further
behaviour of the software system is typically behaviour that has not been considered by the system
developers and is dependent on system implementation details. Attackers of the system can study
the implementation details and exploit them to make the system behave in a way that is desirable for
the attacker.

1.1 Memory Management Vulnerabilities

Imperative programming languages support mutable state, i.e., these languages have constructs
for allocating memory cells that can subsequently be assigned to, or read from by the program,
and then deallocated again. The programming language definition specifies how to use these con-
structs correctly: for instance, allocation of n memory cells will return a reference to an array of cells
that can then be accessed with indices 0 to n − 1 until the reference is deallocated (freed) again.
This specification can be seen as a contract for the memory management sub-component. Some
programming languages implement this contract defensively, and will throw an exception if a client
program accesses memory incorrectly. Other programming languages (most notably, C and C++)
leave the responsibility for correctly allocating, accessing and deallocating memory in the hands of
the programmer, and say that the behaviour of programs that access or manage memory incorrectly
is undefined. Such languages are sometimes called memory unsafe languages, and bugs related to
memory management (memory management vulnerabilities) are a notorious source of security bugs
in these languages.

• A spatial vulnerability is a bug where the program is indexing into a valid contiguous range of
memory cells, but the index is out-of-bounds. The archetypical example is a buffer overflow
vulnerability where the program accesses an array (a buffer) with an out-of-bounds index.

• A temporal vulnerability is a bug where the program accesses memory that was once allocated
to the program, but has since been deallocated. A typical example is dereferencing a dangling
pointer.

The C and C++ language specifications leave the behaviour of a program with a memory manage-
ment vulnerability undefined. As such, the observed behaviour of a program with a vulnerability will
depend on the actual implementation of the language. Memory management vulnerabilities are par-
ticularly dangerous from a security point of view, because in many implementations mutable memory
cells allocated to the program are part of the same memory address space where also compiled
program code, and runtime metadata such as the call stack are stored. In such implementations,
a memory access by the program that violates the memory management contract can result in an
access to compiled program code or runtime metadata, and hence can cause corruption of program
code, program control flow and program data. There exists a wide range of powerful attack techniques
to exploit memory management vulnerabilities [1].

An attack consists of providing input to the program to trigger the vulnerability, which makes the
program violate the memory management contract. The attacker chooses the input such that the
program accesses a memory cell of interest to the attacker:

• In a code corruption attack, the invalid memory access modifies compiled program code to
attacker specified code.

• In a control-flow hijack attack, the invalid memory access modifies a code pointer (for instance,
a return address on the stack, or a function pointer) to make the processor execute attacker-
provided code (a direct code injection attack), or to make the processor reuse existing code of

5

the program in unexpected ways (a code-reuse attack, also known as an indirect code injection
attack, such as a return-to-libc attack, or a return-oriented-programming attack).

• In a data-only attack, the invalid memory access modifies other data variables of the program,
possibly resulting in increased privileges for the attacker.

• In an information leak attack, the invalid memory access is a read access, possibly resulting in
the exfiltration of information, either application secrets such as cryptographic keys, or runtime
metadata such as addresses which assist prediction of the exact layout of memory and hence
may enable other attacks.

Because of the practical importance of these classes of attacks, mitigation techniques have been
developed that counter specific attack techniques, and we discuss these in Topic 4.

1.2 Structured Output Generation Vulnerabilities

Programs often have to dynamically construct structured output that will then be consumed by another
program. Examples include: the construction of SQL queries to be consumed by a database, or the
construction of HTML pages to be consumed by a web browser. One can think of the code that
generates the structured output as a sub-component. The intended structure of the output, and how
input to the sub-component should be used within the output, can be thought of as a contract to which
that sub-component should adhere. For instance, when provided with a name and password as input,
the intended output is a SQL query that selects the user with the given name and password from the
users database table.

A common insecure programming practice is to construct such structured output by means of string
manipulation. The output is constructed as a concatenation of strings where some of these strings are
derived (directly or indirectly) from input to the program. This practice is dangerous, because it leaves
the intended structure of the output string implicit, and maliciously chosen values for input strings can
cause the program to generate unintended output. For instance, a programmer can construct a SQL
query as:

query = "select * from users where name=’" + name +"’" and pw = ’" + password + "’"

with the intention of constructing a SQL query that checks for name and password in the where clause.
However, if the name string is provided by an attacker, the attacker can set name to "John’ --", and
this would remove the password check from the query (note that -- starts a comment in SQL).

A structured output generation vulnerability is a bug where the program constructs such unintended
output. This is particularly dangerous in the case where the structured output represents code that
is intended to include provided input as data. Maliciously chosen input data can then influence
the generated output code in unintended ways. These vulnerabilities are also known as injection
vulnerabilities (e.g., SQL injection, or script injection). The name ‘injection’ refers to the fact that
exploitation of these vulnerabilities will often provide data inputs that cause the structured output to
contain additional code statements, i.e. exploitation injects unintended new statements in the output.
Structured output generation vulnerabilities are relevant for many different kinds of structured outputs:

• A SQL injection vulnerability is a structured output generation vulnerability where the structured
output consists of SQL code. These vulnerabilities are particularly relevant for server-side web
application software, where it is common for the application to interact with a back-end database
by constructing queries partially based on input provided through web forms.

• A command injection vulnerability is a structured output generation vulnerability where the
structured output is a shell command sent by the application to the operating system shell.

6

• A script injection vulnerability, sometimes also called a cross-site scripting (XSS) vulnerability
is a structured output generation vulnerability where the structured output is JavaScript code
sent to a web browser for client-side execution.

This list is by no means exhaustive. Other examples include: XPath injection, HTML injections, CSS
injection, PostScript injection and many more.

Several factors can contribute to the difficulty of avoiding structured output generation vulnerabilities:

• The structured output can be in a language that supports sublanguages with a significantly
different syntactic structure. An important example of such a problematic case is HTML, that
supports sublanguages such as JavaScript, CSS and SVG.

• The computation of the structured output can happen in different phases with outputs of one
phase being stored and later retrieved as input for a later phase. Structured output generation
vulnerabilities that go through multiple phases are sometimes referred to as stored injection
vulnerabilities, or more generally as higher-order injection vulnerabilities. Examples include
stored cross-site scripting and higher-order SQL injection.

Attack techniques for exploiting structured output generation vulnerabilities generally depend on the
nature of the structured output language, but a wide range of attack techniques for exploiting SQL
injection or script injection are known and documented.

The KA on Web and Mobile Security provides a more detailed discussion of such attack techniques.

1.3 Race Condition Vulnerabilities

When a program accesses resources (such as memory, files or databases) that it shares with other
concurrent actors (other threads in the same process, or other processes), the program often makes
assumptions about what these concurrent actors will do (or not do) to these shared resources.

Such assumptions can again be thought of as part of a specification of the program. This specification
is no longer a contract between two sub-components of the program (a caller and a callee), but it is a
contract between the actor executing the program and its environment (all concurrent actors), where
the contract specifies the assumptions made on how the environment will interact with the program’s
resources. For instance, the specification can say that the program relies on exclusive access to a
set of resources for a specific interval of its execution: only the actor executing the program will have
access to the set of resources for the specified interval.

Violations of such a specification are concurrency bugs, also commonly referred to as race conditions,
because a consequence of these bugs is that the behaviour of the program may depend on which
concurrent actor accesses a resource first (‘wins a race’). Concurrency, and the corresponding issues
of getting programs correct in the presence of concurrency, is an important sub-area of computer
science with importance well beyond the area of cybersecurity [6].

But concurrency bugs can be security bugs, too. Concurrency bugs often introduce non-determinism:
the behaviour of a program will depend on the exact timing or interleaving of the actions of all con-
current actors. In adversarial settings, where an attacker controls some of the concurrent actors, the
attacker may have sufficient control on the timing of actions to influence the behaviour of the program
such that a security objective is violated. A race condition vulnerability is a concurrency bug with such
security consequences. A very common instance is the case where the program checks a condition
on a resource, and then relies on that condition when using the resource. If an attacker can interleave
his/her own actions to invalidate the condition between the check and the time of use, this is called a
time-of-check to time-of-use (TOCTOU) vulnerability.

Race condition vulnerabilities are relevant for many different types of software. Two important areas
where they occur are:

7

• Race conditions on the file system: privileged programs (i.e., programs that run with more
privileges than their callers, for instance, operating system services) often need to check some
condition on a file, before performing an action on that file on behalf of a less privileged user.
Failing to perform check and action atomically (such that no concurrent actor can intervene) is
a race condition vulnerability: an attacker can invalidate the condition between the check and
the action.

• Races on the session state in web applications: web servers are often multi-threaded for perfor-
mance purposes, and consecutive HTTP requests may be handled by different threads. Hence,
two HTTP requests belonging to the same HTTP session may access the session state con-
currently. Failing to account for this is a race condition vulnerability that may lead to corruption
of the session state.

1.4 API Vulnerabilities

An Application Programming Interface, or API, is the interface through which one software component
communicates with another component, such as a software library, operating system, web service,
and so forth. Almost all software is programmed against one or more pre-existing APIs. An API
comes with an (explicit or implicit) specification/contract of how it should be used and what services it
offers, and just like the contracts we considered in previous subsections, violations of these contracts
can often have significant consequences for security. If the client of the API violates the contract, the
software system again enters an error-state, and the further behaviour of the software system will
depend on implementation details of the API, and this may allow an attacker to break the security
objective of the overall software system. This is essentially a generalisation of the idea of imple-
mentation vulnerabilities as contract violations from subsections 1.1, 1.2 and 1.3 to arbitrary API
contracts.

Of course, some APIs are more security sensitive than others. A broad class of APIs that are security
sensitive are APIs to libraries that implement security functionality like cryptography or access control
logic. Generally speaking, a software system must use all the ‘security components’ that it relies on in
a functionally correct way, or it is likely to violate a security objective. This is particularly challenging
for cryptographic libraries: if a cryptographic library offers a flexible API, then correct use of that API
(in the sense that a given security objective is achieved) is known to be hard. There is substantial
empirical evidence [7] that developers frequently make mistakes in the use of cryptographic APIs,
thus introducing vulnerabilities.

An orthogonal concern to secure use is the secure implementation of the cryptographic API. Secure
implementations of cryptography are covered in the Cryptography KA.

1.5 Side-channel Vulnerabilities

The execution of a program is ultimately a physical process, typically involving digital electronic cir-
cuitry that consumes power, emits electro-magnetic radiation, and takes time to execute to comple-
tion. It is common, however, in computer science to model the execution of programs abstractly, in
terms of the execution of code on an abstract machine whose semantics is defined mathematically
(with varying levels of rigour). In fact, it is common to model execution of programs at many different
levels of abstraction, including, for instance, execution of assembly code on a specified Instruction
Set Architecture (ISA), execution of Java bytecode on the Java Virtual Machine, or execution of Java
source code according to the Java language specification. Each subsequent layer of abstraction is
implemented in terms of a lower layer, but abstracts from some of the effects or behaviours of that
lower layer. For instance, an ISA makes abstraction from some physical effects such as electro-
magnetic radiation or power consumption, and the Java Virtual Machine abstracts from the details of
memory management.

8

A side-channel is an information channel that communicates information about the execution of a
software program by means of such effects from which the program’s code abstracts. Some side-
channels require physical access to the hardware executing the software program. Other side-
channels, sometimes called software-based side-channels can be used from software running on
the same hardware as the software program under attack.

Closely related to side-channels are covert channels. A covert channel is an information channel
where the attacker also controls the program that is leaking information through the side-channel,
i.e., the attacker uses a side-channel to purposefully exfiltrate information.

Side-channels play an important role in the field of cryptography, where the abstraction gap be-
tween (1) the mathematical (or source code level) description of a cryptographic algorithm and (2)
the physical implementation of that algorithm, has been shown to be relevant for security [8]. It was
demonstrated that, unless an implementation carefully guards against this, side-channels based on
power consumption or execution time can easily leak the cryptographic key used during the execution
of an encryption algorithm. This breaks the security objectives of encryption for an attacker model
where the attacker can physically monitor the encryption process. Side-channel attacks against cryp-
tographic implementations (and corresponding countermeasures) are discussed in the cryptography
KA.

But side-channels are broadly relevant to software security in general. Side-channels can be studied
for any scenario where software is implemented in terms of a lower-layer abstraction, even if that
lower-layer abstraction is itself not yet a physical implementation. An important example is the im-
plementation of a processor’s instruction set architecture (ISA) in terms of a micro-architecture. The
execution of assembly code written in the ISA will have effects on the micro-architectural state; for
instance, an effect could be that some values are copied from main memory to a cache. The ISA
makes abstraction of these effects, but under attacker models where the attacker can observe or
influence these micro-architectural effects, they constitute a side-channel.

Side-channels, and in particular software-based side-channels, are most commonly a confidentiality
threat: they leak information about the software’s execution to an attacker monitoring effects at the
lower abstraction layer. But side-channels can also constitute an integrity threat in case the attacker
can modify the software’s execution state by relying on lower layer effects. Such attacks are more
commonly referred to as fault injection attacks. Physical fault-injection attacks can use voltage or clock
glitching, extreme temperatures, or electromagnetic radiation to induce faults. Software-based fault-
injection uses software to drive hardware components of the system outside their specification range
with the objective of inducing faults in these components. A famous example is the Rowhammer
attack that uses maliciously crafted memory access patterns to trigger an unintended interaction
between high-density DRAM memory cells that causes memory bits to flip.

1.6 Discussion

Better connection with overall security objectives needs more complex specifications. We
have categorised implementation vulnerabilities as violations of specific partial specifications of soft-
ware components. However, the connection to the security objective of the overall software system is
weak. It is perfectly possible that a software system has an implementation vulnerability, but that it is
not exploitable to break a security objective of the system, for instance, because there are redundant
countermeasures elsewhere in the system. Even more so, if a software system does not have any of
the implementation vulnerabilities we discussed, it may still fail its security objective.

To have stronger assurance that the software system satisfies a security objective, one can formalise
the security objective as a specification. During the design phase, on decomposition of the system
in sub-components, one should specify the behaviour of the sub-components such that they jointly
imply the specification of the overall system. With such a design, the connection between an im-
plementation vulnerability as a violation of a specification on the one hand, and the overall security

9

objective of the system on the other, is much stronger.

It is important to note, however, that specifications would become more complex and more domain-
specific in such a scenario. We discuss one illustration of additional complexity. For the vulnerability
categories we discussed (memory management, structured output generation, race conditions and
API vulnerabilities), the corresponding specifications express properties of single executions of the
software: a given execution either satisfies or violates the specification, and the software has a
vulnerability as soon as there exists an execution that violates the specification.

There are, however, software security objectives that cannot be expressed as properties of individual
execution traces. A widely studied example of such a security objective is information flow security. A
baseline specification of this security objective for deterministic sequential programs goes as follows:
label the inputs and outputs of a program as either public or confidential, and then require that no two
executions of the software with the same public inputs (but different confidential inputs) have different
public outputs. The intuition for looking at pairs of executions is the following: it might be that the
program does not leak confidential data directly but instead leaks some partial information about this
data. If collected along multiple runs, the attacker can gather so much information that eventually
relevant parts of the confidential original data are, in fact, leaked. The above specification effectively
requires that confidential inputs can never influence public outputs in any way, and hence cannot
leak even partial information. In a dual way, one can express integrity objectives by requiring that
low-integrity inputs can not influence high-integrity outputs.

But an information flow specification is more complex than the specifications we considered in previ-
ous sections because one needs two executions to show a violation of the specification. Information
leak vulnerabilities are violations of a (confidentiality-oriented) information flow policy. They can also
be understood as violations of a specification, but this is now a specification that talks about mul-
tiple executions of the software system. This has profound consequences for the development of
countermeasures to address these vulnerabilities [9].

Side channel vulnerabilities are different. Side channel vulnerabilities are by definition not vio-
lations of a specification at the abstraction level of the software source code: they intrinsically use
effects from which the source code abstracts. However, if one develops a model of the execution
infrastructure of the software that is detailed enough to model side channel attacks, then side chan-
nel vulnerabilities can again be understood as violations of a partial specification. One can choose
to locate the vulnerability in the execution infrastructure by providing a specification for the execution
infrastructure that says that it should not introduce additional communication mechanisms. This is
essentially what the theory of full abstraction [10] requires. Alternatively, one can refine the model of
the source code language to expose the effects used in particular side channel attacks, thus mak-
ing it possible to express side-channel vulnerabilities at the source code level. Dealing with general
software side-channel vulnerabilities is not yet well understood, and no generally applicable realis-
tic countermeasures are known. One can, of course, isolate the execution, i.e., prevent concurrent
executions on the same hardware, but that then contradicts other goals such as optimised hardware
utilisation.

Vulnerabilities as faults. The classification of vulnerabilities by means of the specification they
violate is useful for understanding relevant classes of vulnerabilities, but is not intended as a complete
taxonomy: there are a very large number of partial specifications of software systems that contribute
to achieving some security objective. Vulnerabilities can, however, be seen as an instance of the
concept of faults, studied in the field of dependable computing, and a good taxonomy of faults has
been developed in that field [11].

2 Prevention of Vulnerabilities

[12, 13, 14] [15, c3]

10

Once a category of vulnerabilities is well understood, an important question is how the introduction
of such vulnerabilities in software can be prevented or at least be made less likely. The most effective
approaches eradicate categories of vulnerabilities by design of the programming language or API.

The general idea is the following. We have seen in Topic 1 that many categories of implementation
vulnerabilities can be described as violations of a specification of some sub-component. Let us call
an execution of the software system that violates this specification, an erroneous execution, or an
execution with an error. From a security point of view, it is useful to distinguish between errors that
cause the immediate termination of the execution (trapped errors), and errors that may go unnoticed
for a while (untrapped errors) [13]. Untrapped errors are particularly dangerous, because the further
behaviour of the software system after an untrapped error can be arbitrary, and an attacker might be
able to steer the software system to behaviour that violates a security objective. Hence, designing a
language or API to avoid errors, and in particular untrapped errors, is a powerful approach to prevent
the presence of vulnerabilities. For instance, languages like Java effectively make it impossible to
introduce memory management vulnerabilities: a combination of static and dynamic checks ensures
that no untrapped memory management errors can occur. This effectively protects against the attack
techniques discussed in 1.1. It is, however, important to note that this does not prevent the presence
of memory-management bugs: a program can still access an array out of bounds. But the bug is
no longer a vulnerability, as execution is terminated immediately when such an access occurs. One
could argue that the bug is still a vulnerability if one of the security objectives of the software system
is availability, including the absence of unexpected program termination.

In cases where choice or redesign of the programming language or API itself is not an option, specific
categories of vulnerabilities can be made less likely by imposing safe coding practices.

This topic provides an overview of these techniques that can prevent the introduction of vulnerabilities.

2.1 Language Design and Type Systems

A programming language can prevent categories of implementation vulnerabilities that can be de-
scribed as violations of a specification by:

1. making it possible to express the specification within the language, and

2. ensuring that there can be no untrapped execution errors with respect to the expressed speci-
fication.

Memory management vulnerabilities. A programming language specification inherently includes
a specification of all the memory allocation, access and deallocation features provided by that lan-
guage. Hence, the specification of the memory management sub-component is always available. A
programming language is called memory-safe if the language definition implies that there can be no
untrapped memory management errors. Languages like C or C++ are not memory-safe because
the language definition allows for implementations of the language that can have untrapped memory
management errors, but even for such languages one can build specific implementations that are
memory-safe (usually at the cost of performance).

A language can be made memory-safe through a combination of:

1. the careful selection of the features it supports: for instance, languages can choose to avoid
mutable state, or can choose to avoid dynamic memory allocation, or can choose to avoid
manual deallocation by relying on garbage collection,

2. imposing dynamic checks: for instance, imposing that every array access must be bounds-
checked, and

11

3. imposing static checks, typically in the form of a static type system: for instance, object-field
access can be guaranteed safe by means of a type system.

Programming languages vary widely in how they combine features, dynamic and static checks.
Pure functional languages like Haskell avoid mutable memory and rely heavily on static checks and
garbage collection. Dynamic languages like Python rely heavily on dynamic checks and garbage col-
lection. Statically typed object-oriented languages like Java and C# sit between these two extremes.
Innovative languages like SPARK (a subset of Ada) [16] and Rust achieve memory safety without re-
lying on garbage collection. Rust, for instance, uses a type system that allows the compiler to reason
about pointers statically, thus enabling it to insert code to free memory at places where it is known to
no longer be accessible. This comes at the expense of some decreased flexibility when it comes to
structuring program code.

Structured output generation vulnerabilities. An important cause for structured output genera-
tion vulnerabilities is that the programmer leaves the intended structure of the output implicit, and
computes the structured output by string manipulation. A programming language can help prevent
such vulnerabilities by providing language features that allow the programmer to make the intended
structure explicit, thus providing a specification. The language implementation can then ensure that
no untrapped errors with respect to that specification are possible.

A first approach is to provide a type system that supports the description of structured data. This
approach has been worked out rigorously for XML data: the programming language supports XML
documents as first class values, and regular expression types [17] support the description of the
structure of XML documents using the standard regular expression operators. A type-correct program
that outputs an XML document of a given type is guaranteed to generate XML output of the structure
described by the type.

A second approach is to provide primitive language features for some of the common use cases of
structured output generation. Language Integrated Query (LINQ) is an extension of the C# language
with syntax for writing query expressions. By writing the query as an expression (as opposed to
building a SQL query by concatenating strings), the intended structure of the query is explicit, and
the LINQ provider that compiles the query to SQL can provide strong guarantees that the generated
query has the intended structure.

Race condition vulnerabilities. Race condition vulnerabilities on heap allocated memory are often
enabled by aliasing, the existence of multiple pointers to the same memory cell. If two concurrent
threads both hold an alias to the same cell, there is the potential of a race condition on that cell.
The existence of aliasing also leads to temporal memory-management vulnerabilities, when memory
is deallocated through one alias but then accessed through another alias. The notion of ownership
helps mitigate the complications that arise because of aliasing. The essence of the idea is that, while
multiple aliases to a resource can exist, only one of these aliases is the owner of the resource, and
some operations can only be performed through the owner. An ownership regime puts constraints
on how aliases can be created, and what operations are allowed through these aliases. By doing so,
an ownership regime can prevent race condition vulnerabilities, or it can support automatic memory
management without a garbage collector. For instance, a simple ownership regime for heap allocated
memory cells might impose the constraints that: (1) aliases can only be created if they are guaranteed
to go out of scope before the owner does, (2) aliases can only be used for reading, and (3) the owner
can write to a cell only if no aliases currently exist. This simple regime avoids data races: there
can never be a concurrent read and write on the same cell. It also supports automatic memory
management without garbage collection: a heap cell can be deallocated as soon as the owner goes
out of scope. Of course, this simple regime is still quite restrictive, and a significant body of research
exists on designing less restrictive ownership regimes that can still provide useful guarantees.

An ownership regime can be enforced by the programming language by means of a type system,

12

and several research languages have done this with the objective of preventing data races or mem-
ory management vulnerabilities. The Rust programming language, a recent systems programming
language, is the first mainstream language to incorporate an ownership type system.

Other vulnerabilities. Many other categories of vulnerabilities can, in principle, be addressed by
means of programming language design and static type checking. There is, for instance, a wide
body of research on language-based approaches to enforce information flow security [18]. These
approaches have until now mainly been integrated in research prototype languages. SPARK is an
example of a real-world language that has implemented information flow analysis in the compiler.
Language-based information flow security techniques have also had a profound influence on the
static detection techniques for vulnerabilities (Topic 3).

2.2 API Design

The development of software not only relies on a programming language, it also relies on APIs, im-
plemented by libraries or frameworks. Just like language design impacts the likelihood of introducing
vulnerabilities, so does API design. The base principle is the same: the API should be designed
to avoid execution errors (where now, execution errors are violations of the API specification), and
in particular untrapped execution errors. It should be difficult for the programmer to violate an API
contract, and if the contract is violated, that should be trapped, leading, for instance, to program
termination or to well-defined error-handling behaviour.

Where the programming language itself does not prevent a certain category of vulnerabilities (e.g.
C does not prevent memory-management vulnerabilities, Java does not prevent race conditions or
structured output generation vulnerabilities), the likelihood of introducing these vulnerabilities can be
reduced by offering a higher-level API:

• Several libraries providing less error-prone APIs for memory management in C or C++ have
been proposed. These libraries offer fat pointers (where pointers maintain bounds information
and check whether accesses are in bound), garbage collection (where manual deallocation is
no longer required), or smart pointers (that support an ownership-regime to safely automate
deallocation).

• Several libraries providing less error-prone APIs to do structured output generation for various
types of structured output and for various programming languages have been proposed. Ex-
amples include Prepared Statement APIs that allow a programmer to separate the structure
of a SQL statement from the user input that needs to be plugged into that structure, or library
implementations of language integrated query, where query expressions are constructed using
API calls instead of using language syntax.

• Several libraries providing less error-prone APIs to cryptography have been proposed. These
libraries use simplification (at the cost of flexibility), secure defaults, better documentation and
the implementation of more complete use-cases (for instance, include support for auxiliary
tasks such as key storage) to make it less likely that a developer will make mistakes.

The use of assertions, contracts and defensive programming [15, c3] is a general approach to con-
struct software with high reliability, and it is a highly useful approach to avoid API vulnerabilities. De-
sign by contract makes the contract of an API explicit by providing pre-conditions and post-conditions,
and in defensive programming these preconditions will be checked, thus avoiding the occurrence of
untrapped errors.

A programming language API also determines the interface between programs in the language and
the surrounding system. For instance, JavaScript in a browser does not expose an API to the local
file system. As a consequence, JavaScript programs running in the browser can not possibly access

13

the file system. Such less privileged APIs can be used to contain or sandbox untrusted code (see
Section 4.3), but they can also prevent vulnerabilities. Object capability systems [19] take this idea
further by providing a language and API that supports structuring code such that each part of the
code only has the privileges it really needs (thus supporting the principle of least privilege).

The design of cryptographic APIs that keep cryptographic key material in a separate protection do-
main, for instance in a Hardware Security Module (HSM) comes with its own challenges. Such APIs
have a security objective themselves: the API to a HSM has the objective of keeping the encryption
keys it uses confidential – it should not be possible to extract the key from the HSM. Research has
shown [4, c18] that maintaining such a security objective is extremely challenging. The HSM API has
an API-level vulnerability if there is a sequence of API calls that extracts confidential keys from the
HSM. Note that this is an API design defect as opposed to the implementation defects considered in
Topic 1.

2.3 Coding Practices

The likelihood of introducing the various categories of vulnerabilities discussed in Topic 1 can be
substantially reduced by adopting secure coding practices. Coding guidelines can also help against
vulnerabilities of a more generic nature that can not be addressed by language or API design, such
as, for instance, the guideline to not hard-code passwords. Secure coding practices can be formalised
as collections of rules and recommendations that describe and illustrate good and bad code patterns.

A first approach to design such coding guidelines is heuristic and pragmatic: the programming com-
munity is solicited to provide candidate secure coding rules and recommendations based on experi-
ence in how things have gone wrong in the past. These proposed rules are vetted and discussed by
the community until a consensus is reached that the rule is sufficiently appropriate to be included in
a coding standard. Influential standards for general purpose software development include the SEI
CERT coding standards for C [14] and Java [20].

For critical systems development, more rigorous and stricter coding standards have been developed.
The MISRA guidelines [21] have seen widespread recognition and adoption for development of critical
systems in C. The SPARK subset of Ada [16] was designed to support coding to enable formal
verification of the absence of classes of vulnerabilities.

Rules can take many forms, including:

• the avoidance of dangerous language provided API functions (e.g., do not use the system()
function in C),

• attempting to avoid undefined behaviour or untrapped execution errors (e.g., do not access
freed memory in C),

• mitigations against certain vulnerabilities caused by the language runtime (e.g., not storing
secrets in Java Strings, as the Java runtime can keep those Strings stored on the heap indefi-
nitely), or,

• proactive, defensive rules that make it less likely to run into undefined behaviour (e.g., exclude
user input from format strings).

Also, specific side-channel vulnerabilities can be addressed by coding rules, for instance avoiding
control flow or memory accesses that depend on secrets can prevent these secrets from leaking
through cache-based or branch-predictor based side-channels.

When they are not enforced by a type system, ownership regimes for safely managing resources
such as dynamically allocated memory can also be the basis for programming idioms and coding
guidelines. For instance, the Resource Acquisition Is Initialisation (RAII) idiom, move semantics

14

and smart pointers essentially support an ownership regime for C++, but without compiler enforced
guarantees.

An important challenge with secure coding guidelines is that their number tends to grow over time, and
hence programmers are likely to deviate from the secure practices codified in the guidelines. Hence,
it is important to provide tool support to check compliance of software with the coding rules. Topic 3.1
discusses how static analysis tools can automatically detect violations against secure coding rules.

3 Detection of Vulnerabilities

[3, 22] [15, c4]

For existing source code where full prevention of the introduction of a class of vulnerabilities was not
possible, for instance, because the choice of programming language and/or APIs was determined
by other factors, it is useful to apply techniques to detect the presence of vulnerabilities in the code
during the development, testing and/or maintenance phase of the software.

Techniques to detect vulnerabilities must make trade-offs between the following two good properties
that a detection technique can have:

• A detection technique is sound for a given category of vulnerabilities if it can correctly conclude
that a given program has no vulnerabilities of that category. An unsound detection technique on
the other hand may have false negatives, i.e., actual vulnerabilities that the detection technique
fails to find.

• A detection technique is complete for a given category of vulnerabilities, if any vulnerability it
finds is an actual vulnerability. An incomplete detection technique on the other hand may have
false positives, i.e. it may detect issues that do not turn out to be actual vulnerabilities.

Trade-offs are necessary, because it follows from Rice’s theorem that (for non-trivial categories of
vulnerabilities) no detection technique can be both sound and complete.

Achieving soundness requires reasoning about all executions of a program (usually an infinite num-
ber). This is typically done by static checking of the program code while making suitable abstractions
of the executions to make the analysis terminate.

Achieving completeness can be done by performing actual, concrete executions of a program that
are witnesses to any vulnerability reported. This is typically done by dynamic detection where the
analysis technique has to come up with concrete inputs for the program that trigger a vulnerability. A
very common dynamic approach is software testing where the tester writes test cases with concrete
inputs, and specific checks for the corresponding outputs.

In practice, detection tools can use a hybrid combination of static and dynamic analysis techniques
to achieve a good trade-off between soundness and completeness.

It is important to note, however, that some detection techniques are heuristic in nature, and hence the
notions of soundness and completeness are not precisely defined for them. For instance, heuristic
techniques that detect violations of secure coding practices as described in 2.3 are checking com-
pliance with informally defined rules and recommendations, and it is not always possible to unam-
biguously define the false positives or false negatives. Moreover, these approaches might highlight
‘vulnerabilities’ that are maybe not exploitable at this point in time, but should be fixed nonetheless
because they are ‘near misses’, i.e., might become easily exploitable by future maintenance mistakes.

Static and dynamic program analysis techniques are widely studied in other areas of computer sci-
ence. This Topic highlights the analysis techniques most relevant to software security.

15

Another important approach to detection of vulnerabilities is to perform manual code review and audit-
ing. These techniques are covered in the Secure Software Lifecycle KA. When using tool-supported
static detection, it makes sense to adjust such subsequent code review and other verification activ-
ities. For instance, if static detection is sound for a given category of vulnerabilities, then one might
consider not to review or test for that category of vulnerabilities in later phases.

3.1 Static Detection

Static detection techniques analyse program code (either source code or binary code) to find vulner-
abilities. Opposed to dynamic techniques, the static ones have the advantage that they can operate
on incomplete code that is not (yet) executable, and that in a single analysis run they attempt to cover
all possible program executions. Roughly speaking, one can distinguish two important classes of
techniques, that differ in their main objective.

Heuristic static detection. First, there are static analysis techniques that detect violations of rules
that are formal encodings of secure programming-practice heuristics. The static analysis technique
builds a semantic model of the program, including, for instance, an abstract syntax tree, and abstrac-
tions of the data flow and control flow in the program. Based on this model, the technique can flag
violations of simple syntactic rules such as, do not use this dangerous API function, or only use this
API function with a constant string as first parameter.

An important indicator for the presence of vulnerabilities is the fact that (possibly malicious) program
input can influence a value used in a risky operation (for instance, indexing into an array, or con-
catenating strings to create a SQL query). Taint analysis (sometimes also called flow analysis) is an
analysis technique that determines whether values coming from program inputs (or more generally
from designated taint sources) can influence values used in such a risky operation (or more gener-
ally, values flowing into a restricted sink). The same analysis can also be used to detect cases where
confidential or sensitive information in the program flows to public output channels.

Many variants of static taint analysis exist. Important variations include (1) how much abstraction
is made of the code, for instance, path-sensitive versus path-insensitive, or context-sensitive versus
context-insensitive analysis, and (2) whether influences caused by the program control flow instead
of program data flow are taken into account (often distinguished by using the terms taint analysis
versus information flow analysis).

To reduce the number of false positives, a taint analysis can take into account sanitisation performed
by the program. Tainted values that were processed by designated sanitisation functions (that are
assumed to validate that the values are harmless for further processing) have their taint removed.

An important challenge is that taint analyses must be configured with the right sets of sources, sinks
and sanitisers. In practice, such configurations currently often occur manually although some recent
works have added tool assistance in which, for instance, machine learning is used to support security
analysts in this task.

Sound static verification. Second, there are static analysis techniques that aim to be sound for
well-defined categories of vulnerabilities (but usually in practice still make compromises and give up
soundness to some extent). For categories of vulnerabilities that can be understood as specification
or contract violations, the main challenge is to express this underlying specification formally. Once
this is done, the large body of knowledge on static analysis and program verification developed in
other areas of computer science can be used to check compliance with the specification. The three
main relevant techniques are program verification, abstract interpretation and model checking.

Program verification uses a program logic to express program specifications, and relies on the pro-
grammer/verifier to provide an adequate abstraction of the program in the form of inductive loop
invariants or function pre- and post-conditions to make it possible to construct a proof that covers all

16

program executions. For imperative languages with dynamic memory allocation, separation logic [23]
is a program logic that can express absence of memory-management and race-condition vulnerabili-
ties (for data races on memory cells), as well as compliance with programmer provided contracts on
program APIs. Checking of compliance with a separation logic specification is typically not automatic:
it is done by interactive program verification where program annotations are used to provide invari-
ants, pre-conditions and post-conditions. However, if one is interested only in absence of memory
management vulnerabilities, these annotations can sometimes be inferred, making the technique au-
tomatic. Also avoiding the use of certain language features (e.g., pointers), and adhering to a coding
style amenable to verification can help making verification automatic.

Abstract interpretation is an automatic technique where abstraction is made from the concrete pro-
gram by mapping the run-time values that the program manipulates to adequate finite abstract do-
mains. For imperative programs that do not use dynamic allocation or recursion, abstract interpreta-
tion is a successful technique for proving the absence of memory management vulnerabilities auto-
matically and efficiently.

Model checking is an automatic technique that exhaustively explores all reachable states of the pro-
gram to check whether none of the states violates a given specification. Because of the state ex-
plosion problem, model checking can only exhaustively explore very small programs, and in practice
techniques to bound the exploration need to be used, for instance, by bounding the number of times
a program loop can be executed. Bounded model checking is no longer sound, but can still find many
vulnerabilities.

Most practical implementations of these analysis techniques give up on soundness to some extent.
In order to be both sound and terminating, a static analysis must over-approximate the possible be-
haviours of the program it analyses. Over-approximation leads to false positives. Real programming
languages have features that are hard to over-approximate without leading to an unacceptable num-
ber of false positives. Hence, practical implementations have to make engineering trade-offs, and
will under-approximate some language features. This makes the implementation unsound, but more
useful in the sense that it reduces the number of false positives. These engineering trade-offs are
nicely summarised in the ‘Soundiness Manifesto’ [24].

3.2 Dynamic Detection

Dynamic detection techniques execute a program and monitor the execution to detect vulnerabilities.
Thus, if sufficiently efficient, they can also be used for just-in-time vulnerability mitigation (See Topic
4). There are two important and relatively independent aspects to dynamic detection: (1) how should
one monitor an execution such that vulnerabilities are detected, and (2) how many and what program
executions (i.e., for what input values) should one monitor?

Monitoring. For categories of vulnerabilities that can be understood as violations of a specified
property of a single execution (See Topic 1.6), complete detection can be performed by monitoring
for violations of that specification. For other categories of vulnerabilities, or when monitoring for
violations of a specification is too expensive, approximative monitors can be defined.

Monitoring for memory-management vulnerabilities has been studied intensively. It is, in principle,
possible to build complete monitors, but typically at a substantial cost in time and memory. Hence,
existing tools explore various trade-offs in execution speed, memory use, and completeness. Modern
C compilers include options to generate code to monitor for memory management vulnerabilities. In
cases where a dynamic analysis is approximative, like a static analysis, it can also generate false
positives or false negatives, despite the fact that it operates on a concrete execution trace.

For structured output generation vulnerabilities, a challenge is that the intended structure of the gen-
erated output is often implicit, and hence there is no explicit specification that can be monitored.
Hence, monitoring relies on sensible heuristics. For instance, a monitor can use a fine-grained dy-

17

namic taint analysis [22] to track the flow of untrusted input strings, and then flag a violation when
untrusted input has an impact on the parse tree of generated output.

Assertions, pre-conditions and post-conditions as supported by the design-by-contract approach to
software construction [15, c3] can be compiled into the code to provide a monitor for API vulnerabili-
ties at testing time, even if the cost of these compiled-in run-time checks can be too high to use them
in production code.

Monitoring for race conditions is hard, but some approaches for monitoring data races on shared
memory cells exist, for instance, by monitoring whether all shared memory accesses follow a consis-
tent locking discipline.

Generating relevant executions. An important challenge for dynamic detection techniques is to
generate executions of the program along paths that will lead to the discovery of new vulnerabilities.
This problem is an instance of the general problem in software testing of systematically selecting
appropriate inputs for a program under test [15, c4]. These techniques are often described by the
umbrella term fuzz testing or fuzzing, and can be classified as:

• Black-box fuzzing, where the generation of input values only depends on the input/output be-
haviour of the program being tested, and not on its internal structure. Many different variants of
black-box fuzzing have been proposed, including (1) purely random testing, where input values
are randomly sampled from the appropriate value domain, (2) model-based fuzzing, where a
model of the expected format of input values (typically in the form of a grammar) is taken into
account during generation of input values, and (3) mutation-based fuzzing, where the fuzzer is
provided with one or more typical input values and it generates new input values by performing
small mutations on the provided input values.

• White-box fuzzing, where the internal structure of the program is analysed to assist in the
generation of appropriate input values. The main systematic white-box fuzzing technique is
dynamic symbolic execution. Dynamic symbolic execution executes a program with concrete
input values and builds at the same time a path condition, a logical expression that specifies
the constraints on those input values that have to be fulfilled for the program to take this specific
execution path. By solving for input values that do not satisfy the path condition of the current
execution, the fuzzer can make sure that these input values will drive the program to a different
execution path, thus improving coverage.

4 Mitigating Exploitation of Vulnerabilities

[1, 25]

Even with good techniques to prevent introduction of vulnerabilities in new code, or to detect vulner-
abilities in existing code, there is bound to be a substantial amount of legacy code with vulnerabilities
in active use for the foreseeable future. Hence, vulnerability prevention and detection techniques can
be complemented with techniques that mitigate the exploitation of remaining vulnerabilities. Such
mitigation techniques are typically implemented in the execution infrastructure, i.e., the hardware,
operating system, loader or virtual machine, or else are inlined into the executable by the compiler
(a so-called ‘inlined reference monitor’). An important objective for these techniques is to limit the
impact on performance, and to maximise compatibility with legacy programs.

4.1 Runtime Detection of Attacks

Runtime monitoring of program execution is a powerful technique to detect attacks. In principle,
program monitors to detect vulnerabilities during testing (discussed in 3.2 Dynamic Detection) could
also be used at runtime to detect attacks. For instance, dynamic taint analysis combined with a

18

dynamic check whether tainted data influenced the parse tree of generated output has also been
proposed as a runtime mitigation technique for SQL injection attacks.

But there is an important difference in the performance requirements for monitors used during testing
(discussed in Topic 3) and monitors used at runtime to mitigate attacks. For runtime detection of
attacks, the challenge is to identify efficiently detectable violations of properties that are expected to
hold for the execution trace of the program. A wide variety of techniques are used:

• Stack canaries detect violations of the integrity of activation records on the call stack, and
hence detect some attacks that exploit memory management vulnerabilities to modify a return
address.

• Non-executable data memory (NX) detects attempts to direct the program counter to data mem-
ory instead of code memory and hence detects many direct code injection attacks.

• Control Flow Integrity (CFI) is a class of techniques that monitors whether the runtime control
flow of the program complies with some specification of the expected control flow, and hence
detects many code-reuse attacks.

On detection of an attack, the runtime monitor must react appropriately, usually by terminating the
program under attack. Termination is a good reaction to ensure that an attack can do no further
damage, but it has of course a negative impact on availability properties.

4.2 Automated Software Diversity

Exploitation of vulnerabilities often relies on implementation details of the software under attack. For
instance, exploitation of a memory management vulnerability usually relies on details of the memory
layout of the program at runtime. A SQL injection attack can rely on details of the database to which
the SQL query is being sent.

Hence, a generic countermeasure to make it harder to exploit vulnerabilities is to diversify these
implementation details. This raises the bar for attacks in two ways. First, it is harder for an attacker
to prepare and test his/her attack on an identical system. An attack that works against a web server
installed on the attacker machine might fail against the same web server on the victim machine
because of diversification. Second, it is harder to build attacks that will work against many systems
at once. Instead of building an exploit once, and then using it against many systems, attackers now
have to build customised exploits for each system they want to attack.

The most important realisation of this idea is Address Space Layout Randomisation (ASLR), where
the layout of code, stack and/or heap memory is randomised either at load or at runtime. Such
randomisation can be coarse-grained, for instance, by just randomly relocating the base address
of code, stack and heap segments, or fine-grained where addresses of individual functions in code
memory, activation records in the stack, or objects in the heap are chosen randomly.

The research community has investigated many other ways of automatically creating diversity at
compilation time or installation time [25], but such automatic diversification can also bring important
challenges to software maintenance as bug reports can be harder to interpret, and software updates
may also have to be diversified.

4.3 Limiting Privileges

The exploitation of a software vulnerability influences the behaviour of the software under attack such
that some security objective is violated. By imposing general bounds on what the software can do,
the damage potential of attacks can be substantially reduced.

Sandboxing is a security mechanism where software is executed within a controlled environment (the
‘sandbox’) and where a policy can be enforced on the resources that software in the sandbox can

19

access. Sandboxing can be used to confine untrusted software, but it can also be used to mitigate the
impact of exploitation on vulnerable software: after a successful exploit on the software, an attacker
is still confined by the sandbox.

The generic idea of sandboxing can be instantiated using any of the isolation mechanisms that mod-
ern computer systems provide: the sandbox can be a virtual machine running under the supervision
of a virtual-machine monitor, or it can be a process on which the operating system imposes an access
control policy. In addition, several purpose-specific sandboxing mechanisms have been developed
for specific classes of software, such as, for instance, jails that can sandbox network- and filesystem-
access in virtual hosting environments. The Java Runtime Environment implements a sandboxing
mechanism intended to contain untrusted Java code, or to isolate code from different stakeholders
within the same Java Virtual Machine, but several significant vulnerabilities have been found in that
sandboxing mechanism over the years [26].

Compartimentalisation is a related but finer-grained security mechanism, where the software itself
is divided in a number of compartments and where some bounds are enforced on the privileges
of each of these compartments. This again requires some underlying mechanism to enforce these
bounds. For instance, a compartimentalised browser could rely on operating system process access
control to bound the privileges of its rendering engine by denying it file system access. Exploitation
of a software vulnerability in the rendering engine is now mitigated to the extent that even after a
successful exploit, the attacker is still blocked from accessing the file system. Very fine-grained forms
of compartimentalisation can be achieved by object-capability systems [19], where each application-
level object can be a separate protection domain.

To mitigate side-channel vulnerabilities, one can isolate the vulnerable code, for instance, on a sepa-
rate core or on separate hardware, such that the information leaking through the side channel is no
longer observable for attackers.

4.4 Software Integrity Checking

Under the umbrella term Trusted Computing, a wide range of techniques have been developed to
measure the state of a computer system, and to take appropriate actions if that state is deemed
insecure. A representative technique is Trusted Boot where measurements are accumulated for each
program that is executed. Any modification to the programs (for instance, because of a successful
attack) will lead to a different measurement. One can then enforce that access to secret keys, for
instance, is only possible from a state with a specified measurement.

Parno et al. [27] give an excellent overview of this class of techniques.

CONCLUSIONS

Software implementation vulnerabilities come in many forms, and can be mitigated by a wide range
of countermeasures. Table 1 summarises the relationship between the categories of vulnerabilities
discussed in this chapter, and the relevant prevention, detection and mitigation techniques commonly
used to counter them.

Acknowledgments The insightful and constructive comments and feedback from the reviewers and
editor on earlier drafts have been extremely valuable, and have significantly improved the structure
and contents of this chapter, as have the comments received during public review.

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

20

Vulnerability category Prevention Detection Mitigation
Memory management
vulnerabilities

memory-safe languages,
fat/smart pointers, cod-
ing rules

many static and dynamic
detection techniques

stack canaries, NX, CFI,
ASLR, sandboxing

Structured output gener-
ation vulnerabilities

regular expression types,
LINQ, Prepared State-
ments

taint analysis runtime detection

Race condition vulnera-
bilities

ownership types, coding
guidelines

static and dynamic de-
tection

sandboxing

API vulnerabilities contracts, usable APIs,
defensive API implemen-
tations

runtime checking of pre-
and post-conditions,
static contract verifica-
tion

compartimentalisation

Side channel vulnerabili-
ties

coding guidelines static detection isolation

Table 1: Summary overview
D

u:
co

m
pu

te
r-

se
cu

rit
y

[2
]

D
ow

d:
ar

t
[5

]

A
nd

er
so

n:
se

cu
rit

y-
en

gi
ne

er
in

g
[4

]

P
ie

rc
e:

20
02

:T
P

L:
50

90
43

[1
2]

C
-c

od
in

g-
st

an
da

rd
[1

4]

sw
eb

ok
v3

[1
5]

C
he

ss
:s

ta
tic

-a
na

ly
si

s
[3

]

1 Categories of Vulnerabilities
1.1 Memory Management Vulnerabilities c4,c5 c5 c6
1.2 Structured Output Generation Vulnerabilities c10,c11 c17 c9
1.3 Race Condition Vulnerabilities c7 c9
1.4 API Vulnerabilities c6 c9,c11
1.5 Side-channel Vulnerabilities c17
2 Prevention of Vulnerabilities
2.1 Language Design and Type Systems c1
2.2 API Design c18 c3
2.3 Coding Practices *
3 Detection of Vulnerabilities
3.1 Static Detection *
3.2 Dynamic Detection c4
4 Mitigating Exploitation of Vulnerabilities
4.1 Runtime Detection of Attacks c4
4.2 Automated Software Diversity c4
4.3 Limiting Privileges c7

21

REFERENCES

FURTHER READING

Building Secure Software [28] and 24 Deadly Sins of Software Security [29]

Building Secure Software was the first book focusing specifically on software security, and even if
some of the technical content is somewhat dated by now, the book is still a solid introduction to the
field and the guiding principles in the book have withstood the test of time.

24 Deadly Sins of Software Security is a more recent and updated book by mostly the same authors.

The Art of Software Security Assessment [5]

Even if this is a book that is primarily targeted at software auditors, it is also a very useful resource
for developers. It has clear and detailed descriptions of many classes of vulnerabilities, including
platform-specific aspects.

Surreptitious Software [30]

Software security in this chapter is about preventing, detecting and removing software implementation
vulnerabilities. However, another sensible, and different, interpretation of the term is that it is about
protecting the software code itself, for instance, against reverse engineering of the code, against
extraction of secrets from the code, or against undesired tampering with the code before or during
execution. Obfuscation, watermarking and tamperproofing are examples of techniques to protect
software against such attacks. Surreptitious Software is a rigorous textbook about this notion of
software security.

OWASP Resources

The Open Web Application Security Project (OWASP) is a not-for-profit, volunteer-driven organisation
that organises events and offers a rich set of resources related to application security and software
security. They offer practice-oriented guides on secure development and on security testing, as well
as a collection of tools and awareness raising instruments. All these resources are publicly available
at https://www.owasp.org.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in Proceedings of
the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 48–62. [Online]. Available: http://dx.doi.org/10.1109/SP.2013.13

[2] W. Du, Computer Security: A hands-on Approach, 2017.
[3] B. Chess and J. West, Secure Programming with Static Analysis, 1st ed. Addison-Wesley

Professional, 2007.
[4] R. J. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems,

2nd ed. Wiley Publishing, 2008.
[5] M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security Assessment: Identifying and

Preventing Software Vulnerabilities. Addison-Wesley Professional, 2006.
[6] B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes, and T. Peierls, Java Concurrency in Practice.

Addison-Wesley Longman, Amsterdam, 2006.
[7] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryptographic mis-

use in android applications,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. ACM, 2013, pp. 73–84.

[8] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems,”
in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 104–113.

22

https://www.owasp.org
http://dx.doi.org/10.1109/SP.2013.13

REFERENCES

[9] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 1, pp.
30–50, Feb. 2000.

[10] M. Abadi, “Protection in programming-language translations,” in Proceedings of the 25th Inter-
national Colloquium on Automata, Languages and Programming, ser. ICALP ’98. London, UK,
UK: Springer-Verlag, 1998, pp. 868–883.

[11] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of de-
pendable and secure computing,” IEEE Trans. Dependable Secur. Comput., vol. 1, no. 1, pp.
11–33, Jan. 2004.

[12] B. C. Pierce, Types and Programming Languages, 1st ed. The MIT Press, 2002.
[13] L. Cardelli, “Type systems,” in The Computer Science and Engineering Handbook, 1997, pp.

2208–2236.
[14] Software Engineering Institute – Carnegie Mellon University, “SEI CERT C coding standard:

Rules for developing safe, reliable, and secure systems,” 2016.
[15] IEEE Computer Society, P. Bourque, and R. E. Fairley, Guide to the Software Engineering Body

of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2014.

[16] “SPARK 2014,” http://www.spark-2014.org/about, accessed: 2018-04-17.
[17] H. Hosoya, J. Vouillon, and B. C. Pierce, “Regular expression types for xml,” ACM Trans. Pro-

gram. Lang. Syst., vol. 27, no. 1, pp. 46–90, Jan. 2005.
[18] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE J.Sel. A. Com-

mun., vol. 21, no. 1, pp. 5–19, Sep. 2006.
[19] M. S. Miller, “Robust composition: Towards a unified approach to access control and concur-

rency control,” Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland, USA, May
2006.

[20] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland, and D. Svoboda, The CERT Oracle
Secure Coding Standard for Java, 1st ed. Addison-Wesley Professional, 2011.

[21] MISRA Ltd, MISRA-C:2012 Guidelines for the use of the C language in Critical Systems, Motor
Industry Software Reliability Association Std., Oct. 2013. [Online]. Available: www.misra.org.uk

[22] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask),” in Proceedings of
the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 317–331.

[23] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in Proceedings of
the 17th Annual IEEE Symposium on Logic in Computer Science, ser. LICS ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 55–74.

[24] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E. Chang, S. Z. Guyer,
U. P. Khedker, A. Møller, and D. Vardoulakis, “In defense of soundiness: A manifesto,” Commun.
ACM, vol. 58, no. 2, pp. 44–46, Jan. 2015.

[25] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated software diversity,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 276–291.

[26] P. Holzinger, S. Triller, A. Bartel, and E. Bodden, “An in-depth study of more than ten years
of java exploitation,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16, 2016, pp. 779–790.

[27] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping trust in commodity computers,” in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 414–429.

[28] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the Right
Way (Paperback) (Addison-Wesley Professional Computing Series). Addison-Wesley Profes-
sional, 2002.

[29] M. Howard, D. LeBlanc, and J. Viega, 24 Deadly Sins of Software Security: Programming Flaws

23

http://www.spark-2014.org/about
www.misra.org.uk

REFERENCES

and How to Fix Them, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 2010.
[30] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Watermarking, and Tamperproof-

ing for Software Protection, 1st ed. Addison-Wesley Professional, 2009.

24

	Categories of Vulnerabilities
	Memory Management Vulnerabilities
	Structured Output Generation Vulnerabilities
	Race Condition Vulnerabilities
	API Vulnerabilities
	Side-channel Vulnerabilities
	Discussion

	Prevention of Vulnerabilities
	Language Design and Type Systems
	API Design
	Coding Practices

	Detection of Vulnerabilities
	Static Detection
	Dynamic Detection

	Mitigating Exploitation of Vulnerabilities
	Runtime Detection of Attacks
	Automated Software Diversity
	Limiting Privileges
	Software Integrity Checking

