
The Latest News from Research at Kudelski Security

E-VOTING CRYPTO PROTOCOLS

November 5, 2018 JP Aumasson Crypto, Data
privacy Leave a comment

“It’s not the voting that’s democracy; it’s the counting.”
—Tom Stoppard

For cryptography researchers, e-voting isn’t about
voting machine or online voting, but is a field of
research in its own right. E-voting research is about
designing e-voting protocols, the core mathematical
components of end-to-end auditable voting systems, or
voting systems where independent auditors and voters

SEARCH

CATEGOR

IES

Select

ARCHIVES

Select

HOME BLOGGERS CATEGORIES

Search

https://research.kudelskisecurity.com/2018/11/05/e-voting-crypto-protocols/
https://research.kudelskisecurity.com/author/veorq/
https://research.kudelskisecurity.com/category/crypto/
https://research.kudelskisecurity.com/category/data-privacy/
https://encrypted.google.com/search?q=site%3Aeprint.iacr.org%2F2015+e-voting
https://en.wikipedia.org/wiki/End-to-end_auditable_voting_systems
https://research.kudelskisecurity.com/
https://research.kudelskisecurity.com/
https://research.kudelskisecurity.com/
https://research.kudelskisecurity.com/bloggers/
https://research.kudelskisecurity.com/categories/

can securely verify that a vote’s outcome is correct.
These voting systems aren’t just research papers but
real technology that’s been used for actual elections: the
city of Takoma Park, Maryland trusted Scantegrity II’s
system based on paper ballots with invisible ink, while
cryptographers themselves used the Helios online
voting system to elect their leaders.

E-voting is a super complex topic, so in this post I’ll
restrict myself to the key notions: what it means to
securely verify a vote, how votes can be counted without
looking at each individual vote, and what stops voters
from cheating. I’m not going to give you a full-blow
description of an e-voting protocol and all its intricacies,
but if that’s what you like, papers are plenty.

Secure Verification

What do we expect from a secure voting system?

First, the most obvious: You want to verify that ballots
are counted as cast, meaning that everyone should be
able to verify the final tally is the correct count of the
ballots cast by the voters. Verification shouldn’t reveal
more information than the final count. In particular, a
verifier should have no way to guess who voted what.
That’s the equivalent of manually counting paper ballots
in old-fashioned voting.

Second, you want any voter to be able to verify that their

vote was counted, and represents their voting intention.
This should be done without revealing the actual vote,
and more generally a voter shouldn’t be able to prove
how they voted. That’s in order to prevent coercion, and
let voters freely choose without fearing for the
consequence of their choice.

http://scantegrity.org/
https://vote.heliosvoting.org/
http://www.iacr.org/elections/eVoting/
http://scantegrity.org/papers/scantegrityIEEESP.pdf
https://people.csail.mit.edu/rivest/pubs/AR06.pdf
http://eprint.iacr.org/2016/670

Finally, a voting system should defend against fraud: a
voter shouldn’t be able to cast more than one ballot,
and it should be impossible to modify or replicate a
ballot. Furthermore, non-registered parties shouldn’t be
able to vote.

To recap, we want public verifiability, voter confidence,
coercion resistance, and election integrity. These are the
principles put forward in the foundational research by
Chaum, Neff, and others in the early 2000s.

General Principle

Most of the classic e-voting protocols work like this:

1. Voters receive a token, in the form of a ballot that
they will modify according to their voting choice.
Different voters get different ballots.

2. The voter encrypts their ballot (using a special type of
encryption that allows for the e-voting magic) and
casts it, so that the voting officials received the
encrypted ballot.

3. The voting officials post encrypted ballots on a
bulletin board, a “public broadcast channel with
memory” in cryptographers’ jargon, or a kind of
Pastebin, in simpler terms.

4. Voting officials combine the encrypted ballots in
order to get an encrypted tally. Then they decrypt it
(but never decrypt the actual ballots!) and publish the
result.

5. Given the result and the encrypted votes, anyone can
verify that the result is correct.

Secure Tallying:
Homomorphic Encryption

In step 4 above, election officials combine ciphertexts in
order to build another ciphertext that encrypts the sum
of all individual votes. To do this, e-voting schemes use
an encryption scheme Enc() for which you can get
Enc(v1 + v2) given only Enc(v1), Enc(v2), and without
knowing the decryption key. The encryption schemes
that can do this are called homomorphic.

For example, and simplifying a lot, US voters may do the
following on November 8 :

1. Receive a “Clinton” ballot and a “Trump” ballot from
the election officials (for the sake of simplicity, I’m
only considering the two main candidates).

2. Write Enc(1) on one ballot, and write Enc(0) on the
other, using as a key the public key provided by
election officials

The encrypted ballots are then posted on a bulletin
board, along with the ID of the voter. Everyone knows
who has voted, but it’s impossible to find out for whom
because every Enc(0) and every Enc(1) are unique, since
we’re using strong, randomized encryption. If encryption
were deterministic, a voter could be coerced to reveal
their vote by computing Enc(0) again and comparing it
with the value on the bulletin board.

Finally, the election officials combine all the “Clinton”
ballots and get as a result Enc(number of Clinton votes),
and to the same with “Trump” ballots in order to get
Enc(number of Trump votes). They then get the
decryption key and decrypt those two values and
announce the winner.

But how do we find a homomorphic encryption scheme?
Actually it’s easy, encryption schemes like RSA and
ElGamal are homomorphic in their basic versions, for
they satisfy

th

https://en.wikipedia.org/wiki/Homomorphic_encryption

Enc(v1) × Enc(v2) = Enc(v1 × v2)

But that’s not exactly what we want, these are
multiplicatively homomorphic whereas we need additive

homomorphism. There are tricks to make RSA and
ElGamal additively homomorphic, but instead I’ll show a
lesser-known scheme that is directly additively
homomorphic: Paillier’s encryption, which encrypts a
message v1 to

Enc(v1) = g r1 mod n

Where n = pq and g are fixed parameters and r1 is a
random integer in]1; n [. We thus have

Enc(v1) × Enc(v2) = (g r1) × (g r2) mod n = g
(r1r2) mod n = Enc(v1 + v2)

That is, we can use Paillier’s scheme for tallying
encrypted votes.

Preventing Fraud: Zero-
Knowledge Proofs

To cheat, a voter might choose to write Enc(10000)
instead of Enc(1) in their ballot to give more votes to a
candidate. If they’re really malicious, they may write
Enc(some large number) in order to trigger an integer
overflow and crash the voting system. So how can one
ensure that the vote is a legitimate vote (0 or 1) without
decrypting it?

The solution is called NIZK, for non-interactive zero-
knowledge. An NIZK proof is a rather complex and
incredibly powerful cryptographic object: in our case it
allows a voter to prove that their ciphertext is either an
encryption of 0 or of 1, but without leaking any
information on the encrypted value. More generally,

v1 n 2

2

v1 n v2 n 2 v1+v2

n 2

NIZK proofs allow a prover to convince a verifier that
some statement is true by sending only a bunch of data
with no other interactions.

Perhaps the simplest zero-knowledge proof system is
Schnorr’s protocol: say you know the solution of a
discrete logarithm problem (the hard problem behind
DSA and elliptic curve cryptography) and want to prove
that you know the solution, but without revealing any
bit of the solution. That is, you know the x such that g =
y mod p, and the verifier only knows g, y, and p. To
convince a verifier, you will then play the following
game:

1. Pick a random number r and send g to the verifier
(the commitment)

2. Receive a random number c from the verifier (the
challenge)

3. Send the number s = r + cx to the verifier
4. The verifier computes g = g and checks that it’s

equal to g × y = g × (g)

In this interactive protocol, the prover doesn’t reveal any
information on x, because everything they send is
random. Yet only a prover that knows x would be able to
send an s that passes the final verification.

To turn such interactive protocols into non-interactive
ones (that is, in a single piece of data), NIZK proofs are
built by playing with yourself and simulating a verifier, in
such a way that the actual verifier is convinced that you
couldn’t have made up the NIZK proof without knowing
the proven statement.

Conclusion
Key ideas viewed in this post are:

x

r

s r + cx

r c r x c

The crux of secure e-voting system is public

verifiability. It’s achieved by posting encrypted ballots
on a publicly readable forum. Election officials should
also describe the mechanism that performs the
actual verification.
Voter confidence is achieved by authenticating each
voter with a unique ID and enabling voters to verify
that their ballot 1) was counted and 2) hasn’t been
tampered with.
Voters can’t be punished for voting for the “wrong”
candidates, thanks to guaranteed coercion resistance,
achieved in part from unpredictable, probabilistic
encryption.
Privacy of ballots is ensured by never decrypting the
encrypted votes, but only decrypting the tally created
from homomorphic encryption.
Fraud is defeated by forcing voters to release a
cryptographic proof that their ballot is a legitimate
one, thanks to non-interactive zero-knowledge (NIZK)
proof techniques.

Concepts and techniques presented here may look deep
and sophisticated, but in fact I’ve only scratched the
surface. You won’t get a secure working e-voting system
if you just follow the description above; I’ve for example
omitted details on how voters can verify their ballots in
practice, why the server uses NIZK proofs, and so on.
The upshot is that any secure e-voting protocol is a very
complicated and subtle machinery, and actual
deployments add even more complexity due to human
and operational factors.

To learn more about the cryptography behind e-voting,
the following are good references:

David Chaum’s 2004 article in IEEE S&P:
https://people.csail.mit.edu/rivest/voting/papers/Cha
um-
SecretBallotReceiptsTrueVoterVerifiableElections.pdf

https://people.csail.mit.edu/rivest/voting/papers/Chaum-SecretBallotReceiptsTrueVoterVerifiableElections.pdf

CRYPTO CRYPTOGRAPHY E-VOTING ELECTION ELECTION HACKING

MIDTERM MIDTERM ELECTION MIDTERMS 2018 VOTING

« Build Your Own Hardware
Implant

Ledger Donjon wins Kudelski
Security Crypto Challenge:
Behind the scene 1/3 »

Report The Future of Voting sponsored by the US Vote
Foundation: https://www.usvotefoundation.org/sites/
default/files/E2EVIV_full_report.pdf
Ben Adida’s GoogleTech talk:
https://youtu.be/ZDnShu5V99s
How human and operational factors can compromise
e-voting
schemes: https://www.usenix.org/legacy/event/sec05
/tech/full_papers/karlof/karlof.pdf
Lecture notes on zero-knowledge proofs (describing
the Chaum-Pedersen protocol used in Helios):
http://www.cs.jhu.edu/~susan/600.641/scribes/lectur
e10.pdf

LEAVE A REPLY

Enter your comment here...Enter your comment here...

https://research.kudelskisecurity.com/tag/crypto/
https://research.kudelskisecurity.com/tag/cryptography/
https://research.kudelskisecurity.com/tag/e-voting/
https://research.kudelskisecurity.com/tag/election/
https://research.kudelskisecurity.com/tag/election-hacking/
https://research.kudelskisecurity.com/tag/midterm/
https://research.kudelskisecurity.com/tag/midterm-election/
https://research.kudelskisecurity.com/tag/midterms-2018/
https://research.kudelskisecurity.com/tag/voting/
https://research.kudelskisecurity.com/2018/10/23/build-your-own-hardware-implant/
https://research.kudelskisecurity.com/2018/12/04/ledger-donjon-wins-kudelski-security-crypto-challenge-behind-the-scene-1-3/
https://www.usvotefoundation.org/sites/default/files/E2EVIV_full_report.pdf
https://youtu.be/ZDnShu5V99s
https://www.usenix.org/legacy/event/sec05/tech/full_papers/karlof/karlof.pdf
http://www.cs.jhu.edu/~susan/600.641/scribes/lecture10.pdf

Blog at WordPress.com.

https://wordpress.com/?ref=footer_blog

